Advertisement

Making 3D Replicas Using a Flatbed Scanner and a 3D Printer

  • Vaclav Skala
  • Rongjiang Pan
  • Ondrej Nedved
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

This paper describes a novel approach to making 3D replicas of nearly flat objects using a flatbed scanner and a 3D printer. The surface reconstruction is based on the fact that the light in a flatbed scanner shines under a given constant angle and the CCD sensor records different intensities depending on the angle between a local normal vector of a micro-facet and the vector towards the light source position. The scanned object is rotated by 90° and thus four different images are obtained. It enables normal vector estimation followed by a surface reconstruction based on analogy with solution of partial differential equations. 3D replicas are produced using a 3D printer based on the data from the surface reconstruction. Due to high resolution of the flatbed scanner, resulting replicas are of a high precision as well. This method can be used e.g. in making replicas of archaeological parts.

Keywords

computer graphics 3D surface reconstruction 3D printing digital archaeology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blinn, J.F.: Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph. 12(3), 286–292 (1978)CrossRefGoogle Scholar
  2. 2.
    Chen, T., Goesele, H.P.: Seidel: Mesostructure from Specularity. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1825–1832. IEEE (2006), doi:10.1109/CVPR.2006.182Google Scholar
  3. 3.
    Clarkson, W., Weyrich, T., Finkelstein, A., Heninger, N., Halderman, J.A., Felten, E.W.: Finger printing Blank Paper Using Commodity Scanners. In: Proceedings of the 2009 30th IEEE Symposium on Security and Privacy (SP 2009), pp. 301–314. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  4. 4.
    Johnson, M.K., Adelson, E.H.: Retrographic sensing for the measurement of surface texture and shape. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1070–1077. IEEE (2009), doi:10.1109/CVPRW.2009.5206534Google Scholar
  5. 5.
    Johnson, M.K., Cole, F., Raj, A., Adelson, E.H.: Microgeometry capture using an elastomeric sensor. ACM Trans. Graph. 30(4), Article 46, 8 pages (2011)CrossRefGoogle Scholar
  6. 6.
    Liu, X., Hu, M.Y., Zhang, H.P.J., Tong, X., Guo, B., Shum, H.-Y.: Synthesis and rendering of bidirectional texture functions on arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics 10(3), 278–289 (2004), doi:10.1109/TVCG.2004.1272727CrossRefGoogle Scholar
  7. 7.
    Myronenko, A., Song, X.B.: On the closed-form solution of the rotation matrix arising in computer vision problems. CoRR abs/0904.1613 (2009)Google Scholar
  8. 8.
    Pan, R., Skala, V.: Surface Reconstruction with higher-order smoothness. The Visual Computer 28(2), 155–162 (2012) ISSN 0178-2789CrossRefGoogle Scholar
  9. 9.
    Pintus, R., Malzbender, T., Wang, O., Bergman, R., Nachlieli, H., Ruckenstein, G.: Photo Repair and 3D Structure from Flatbed Scanners Using 4- and 2-Source Photometric Stereo. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 326–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Skala, V.: Projective Geometry and Duality for Graphics, Games and Visualization - Course SIGGRAPH Asia 2012, Singapore (2012) ISBN 978-1-4503-1757-3Google Scholar
  11. 11.
    Toler-Franklin, C., Finkelstein, A., Rusinkiewicz, S.: Illustration of complex real-world objects using images with normals. In: Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering (NPAR 2007), pp. 111–119. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In: Proc. 22nd SPIE Annual Technical Symposium, vol. 155, pp. 136–143 (1978)Google Scholar
  13. 13.
    Woodham, R.J.: Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vaclav Skala
    • 1
  • Rongjiang Pan
    • 2
  • Ondrej Nedved
    • 1
  1. 1.Faculty of Applied SciencesUniversity of West BohemiaPlzenCzech Republic
  2. 2.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations