Advertisement

Piecewise Smooth Systems: Equilibrium Points and Application to Gene Regulatory Networks

  • Marco Berardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

After presenting the main issues of piecewise smooth dynamical systems, and defining the different types of equilibrium points, we focus on Piecewise Linear (PWL) systems. A result on the characterization of a particular type of PWL system is given, that relates the pseudo-equilibrium point of a PWL system with the solution of a linear algebraic system. Examples are given and an application to Gene Regularoy Networks (GRNs) is provided.

Keywords

Piecewise linear systems gene regulatory networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Springer, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    Aubin, J.-P., Cellina, A.: Differential Inclusion. Springer, Berlin (1984)CrossRefGoogle Scholar
  3. 3.
    Berardi, M.: Rosenbrock-type methods applied to discontinuous differential systems. Mathematics and Computers in Simulations 95, 229–243 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Berardi, M., Lopez, L.: On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs. Applied Mathematics Letters 25, 995–999 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Casey, R., de Jong, H., Gouzé, J.L.: Piecewise-linear Models of Genetics Regulatory Networks: Equilibria and their Stability. Journal of Mathematical Biology 52, 27–56 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    D’Abbicco, M., Calamita, G., Del Buono, N., Berardi, M., Gena, P., Lopez, L.: A Model for the Hepatic Glucose Metabolism based on Hill and Step Functions, preprint (2014)Google Scholar
  7. 7.
    de Jong, H.: Modelling and simulation of Genetic Regulatory Systems: a literature review. Journal of Computational Biology 9, 67–103 (2002)CrossRefGoogle Scholar
  8. 8.
    de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative Simulation of Genetic Regulatory Networks Using Piecewise-Linear Models. Bulletin of Mathematical Biology 66, 301–340 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Casey, R., de Jong, H., Gouzé, J.L.: Piecewise-linear Models of Genetics Regulatory Networks: Equilibria and their Stability. Journal of Mathematical Biology 52, 27–56 (2002)CrossRefGoogle Scholar
  10. 10.
    de Jong, H., Gouzé, J.L., Hernandez, C., Sari, T., Geiselmann, J.: Dealing with Discontinuities in the Qualitative Simulation of Genetic Regulatory Network. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 725–730. IOS Press, Amsterdam (2002)Google Scholar
  11. 11.
    Del Buono, N., Elia, C., Lopez, L.: On the equivalence between the sigmoidal approach and Utkin’s approach for piecewise-linear models of gene regulatory networks. To appear on SIAM Journal of Applied Dynamical SystemsGoogle Scholar
  12. 12.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems. Theory and Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  13. 13.
    Dieci, L., Lopez, L.: Sliding motion on discontinuity surfaces of high co-dimension. A construction for selecting a Filippov vector field. Numerische Mathematik 117, 779–811 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dieci, L., Lopez, L.: Sliding motion in Filippov differential systems: Theoretical results and a computational approach. SIAM Journal of Numerical Analysis 47, 2023–2051 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dieci, L., Lopez, L.: A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side. Journal of Computational and Applied Mathematics 236, 3967–3991 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dieci, L., Lopez, L.: Numerical Solution of Discontinuous Differential Systems: Approaching the Discontinuity from One Side. Applied Numerical Mathematics 67, 98–110 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dieci, L., Lopez, L.: One-Sided Event Location Techniques in the Numerical Solution of Discontinuous Differential Systems. Submitted to BIT Numerical MathematicsGoogle Scholar
  18. 18.
    Dieci, L., Lopez, L., Elia, C.: A Filippov sliding vector fieldon an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis. Journal of Differential Equations 254, 1800–1832 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gear, C.W., Østerby, O.: Solving ordinary differential equations with discontinuities. ACM Transactions on Mathematical Software 10, 23–44 (1984)CrossRefzbMATHGoogle Scholar
  21. 21.
    Gouzé, J.-L., Sari, T.: A class of piecewise linear differential equations arsing in biological models. Dynamical Systems 17, 299–319 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ironi, L., Panzeri, L., Plahte, E., Simoncini, V.: Dynamics of actively regulated gene networks. Physica D: Nonlinear Phenomena 240, 779–794 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Johansson, K.H., Rantzer, A., Astrom, K.J.: Fast swiyches in relay feedback systems. Automatica 35, 539–552 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Johansson, K.H., Rantzer, A.: Global analysis of third-order relay feedback systems, Technical Report, 1996. IEEE Transations on Automatic Control 247, 1414–1423 (2002)CrossRefGoogle Scholar
  25. 25.
    Johansson, K.H., Rantzer, A., Astrom, K.J.: Limit Cycles With Chattering in Relay Feedback Systems. IEEE Transactions on Automatic Control 47, 1414–1423 (2002)CrossRefGoogle Scholar
  26. 26.
    Li, J., Kuang, Y., Mason, C.C.: Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. Journal of Theoretical Biology 242, 722–735 (2006)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Makroglou, A., Li, J., Kuang, Y.: Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Applied Numerical Mathematics 56, 559–573 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Wang, H., Li, J., Kuang, J.: Mathematical modeling and qualitative analysis of insulin therapies. Mathematical Biosciences 210, 17–33 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Berardi
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità di BariBariItaly
  2. 2.Istituto di Ricerca sulle Acque - CNRBariItaly

Personalised recommendations