Skip to main content

Link Prediction in Online Social Networks Using Group Information

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8584))

Included in the following conference series:


Users of online social networks voluntarily participate in different user groups or communities. Researches suggest the presence of strong local community structure in these social networks, i.e., users tend to meet other people via mutual friendship. Recently, different approaches have considered communities structure information for increasing the link prediction accuracy. Nevertheless, these approaches consider that users belong to just one community. In this paper, we propose three measures for the link prediction task which take into account all different communities that users belong to. We perform experiments for both unsupervised and supervised link prediction strategies. The evaluation method considers the links imbalance problem. Results show that our proposals outperform state-of-the-art unsupervised link prediction measures and help to improve the link prediction task approached as a supervised strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Benchettara, N., Kanawati, R., Rouveirol, C.: A supervised machine learning link prediction approach for academic collaboration recommendation. In: RecSys 2010, pp. 253–256 (2010)

    Google Scholar 

  2. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1-6), 309–320 (2000)

    Article  Google Scholar 

  3. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schlogl, A., Birch, G.E.: Comparison of evaluation metrics in classification applications with imbalanced datasets. In: ICMLA 2008, pp. 777–782 (2008)

    Google Scholar 

  5. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM 2006 Workshop on Link Analysis, Counterterrorism and Security (2006)

    Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)

    Google Scholar 

  7. Hoseini, E., Hashemi, S., Hamzeh, A.: Link prediction in social network using co-clustering based approach. In: WAINA 2012, pp. 795–800. IEEE (2012)

    Google Scholar 

  8. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. JASIST 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  9. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: ACM SIGKDD KDD 2010, pp. 243–252. ACM (2010)

    Google Scholar 

  10. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  11. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: ACM SIGCOMM IMC 2007, pp. 29–42. ACM (2007)

    Google Scholar 

  12. Soundarajan, S., Hopcroft, J.: Using community information to improve the precision of link prediction methods. In: WWW 2012, pp. 607–608. ACM (2012)

    Google Scholar 

  13. Valverde-Rebaza, J., de Andrade Lopes, A.: Link prediction in complex networks based on cluster information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS (LNAI), vol. 7589, pp. 92–101. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Valverde-Rebaza, J., de Andrade Lopes, A.: Structural Link Prediction Using Community Information on Twitter. In: CASoN 2012, pp. 132–137. IEEE (2012)

    Google Scholar 

  15. Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of Twitter users for link prediction. Social Network Analysis and Mining 3(4), 1063–1074 (2013)

    Article  Google Scholar 

  16. Yin, D., Hong, L., Davison, B.D.: Structural link analysis and prediction in microblogs. In: CIKM 2011, pp. 1163–1168 (2011)

    Google Scholar 

  17. Zhang, Q.-M., Lü, L., Wang, W.-Q., Zhu, Y.-X., Zhou, T.: Potential theory for directed networks. PLoS ONE 8(2), e55437 (2013)

    Article  Google Scholar 

  18. Zheleva, E., Getoor, L., Golbeck, J., Kuter, U.: Using friendship ties and family circles for link prediction. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) SNAKDD 2008. LNCS, vol. 5498, pp. 97–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Valverde-Rebaza, J.C., de Andrade Lopes, A. (2014). Link Prediction in Online Social Networks Using Group Information. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09152-5

  • Online ISBN: 978-3-319-09153-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics