Modelling Wave Refraction Pattern Using AIRSAR And POLSAR C-Band Data

  • Maged Marghany
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


This study has demonstrated new approach for simulation of wave refraction pattern in airborne radar data. In doing so, the quasi-linear algorithm used to model significant wave height based on new approach of azimuth cut-off algorithm. The study shows that wave refraction pattern can simulate from AIRSAR and POLSAR data with convergence and divergence spectra energy of 0.84 and 0.4 m2 sec, respectively. In conclusion, modification of conventional azimuth cut-off algorithm can be used to retrieve significant wave height in Cvv- band data under circumstance of wave transformation using first order Partial Differential Equation (PDEs).


Quasi-Linear model AIRSAR POLSAR Wave refraction quasilinear model first order Partial Differential Equation (PDEs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forget, F., Broche, P., Cuq, F.: Principles of Swell Measurement by SAR with Application to ERS-1 Observations off the Mauritanian Coast. Int. J. Rem. Sen. 16, 2403–2422 (1995)CrossRefGoogle Scholar
  2. 2.
    Herbers, T.H., Elgar, C., Guza, R.T.: Directional Spreading of Waves in the Nearshore. J. Geophys. Res. 104, 7683–7693 (1999)CrossRefGoogle Scholar
  3. 3.
    Hasselmann, K., Hasselmann, S.: On the Nonlinear Mapping of An Ocean Spectrum and Its Inversion. J. Geophys. Res. 96, 10,713–10,799 (1991)CrossRefGoogle Scholar
  4. 4.
    Li, X., Lehner, S., Rosenthal, W.: Investigation of Ocean Surface Wave Refraction Using TerraSAR-X Data. IEEE Tran. Geos. Remote Sens. 48, 830–840 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, X.M., Lehnera, S., He, M.X.: Ocean Wave Measurements Based on Satellite Synthetic Aperture Radar (SAR) and Numerical Wave Model (WAM) Data–Extreme Sea State and Cross Sea Analysis. Int. J. Rem. Sen. 29, 6403–6416 (2008)CrossRefGoogle Scholar
  6. 6.
    Maged, M.M., Cracknell, A., Hashim, M.: 3-D Visualizations of Coastal Bathymetry by Utilization of Airborne TOPSAR Polarized Data. Int. J. Dig. Ear. 3, 1753–8955 (2010)Google Scholar
  7. 7.
    Maged, M., Cracknell, A., Hashim, M.: 3D Coastal Geomorphology reconstruction Using Differential Synthetic Aperture Radar Interferometry (DInSAR). Int. J. of Com. Sci. and Soft. Tech. 3, 1–4 (2010)Google Scholar
  8. 8.
    Maged, M., Hashim, M., Cracknell, A.: 3D Reconstruction of Coastal Bathymetry from AIRSAR/POLSAR data. Chin. J. Ocean. and Lim. 27(2009), 117–123 (2009)Google Scholar
  9. 9.
    Maged, M.: Velocity Bunching Model for Modelling Wave Spectra along East Coast of Malaysia. J. Ind. Soc. Rem. Sens. 32, 185–198 (2004)CrossRefGoogle Scholar
  10. 10.
    Maged, M.: TOPSAR Wave Spectra Model and Coastal Erosion Detection. Int. J. App. Ear. Obs. and Geo. 3, 357–365 (2001)CrossRefGoogle Scholar
  11. 11.
    Maged, M.: Operational of Canny Algorithm on SAR Data for Modeling Shoreline Change. Phot. Fer. Geo. 2, 93–102 (2001)Google Scholar
  12. 12.
    Maged, M.: ERS-1 Modulation Transfer Function Impact on Shoreline Change. Int. J. App. Ear. Obs. and Geo. 4, 279–294 (2003)CrossRefGoogle Scholar
  13. 13.
    Schulz-Stellenfleth, J., Lehner, S.: Measurement of 2-D Sea Surface Elevation Fields Using Complex Synthetic Aperture Radar Data. IEEE Trans. Geo. and Rem. Sen. 42, 1149–1160 (2004)Google Scholar
  14. 14.
    Schulz-Stellenfleth, J., Koing, T., Lehner, S.: An Empirical Approach for the Retrieval of Integral Ocean Wave Parameters from Synthetic Aperture Radar Data. J. Geo. Res. 112, C03019–C03033 (2007)Google Scholar
  15. 15.
    Schulz-Stellenfleth, J., Lehner, S., Dhoja, D.: A Parametric Scheme for the Retrieval of Two-dimensional Ocean Wave Spectra from Synthetic Aperture Radar Look Cross Spectra. J. Geo. Res. 110, C05004–C05011 (2005)Google Scholar
  16. 16.
    Schuler, D.L., Lee, J.S., Kasilingam, D., Pottier, E.: Measurement of Ocean Surface Slopes and Wave Spectra Using Polarimetric SAR Image Data. Rem. Sen. of Env. 91, 198–211 (2004)CrossRefGoogle Scholar
  17. 17.
    Person, W.J., Moskowitz, L.: A Proposed Spectral From Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii. J. Geo. Res. 69, 5181–5190 (1964)CrossRefGoogle Scholar
  18. 18.
    Populus, J., Aristaghes, C., Jonsson, L., Augustin, J.M., Pouliquen, E.: The Use of SPOT Data For Wave Analysis. Rem. Sen. Env. 36, 55–65 (1991)CrossRefGoogle Scholar
  19. 19.
    Vachon, P.W., Harold, K.E., Scott, J.: Airborne and Space-borne Synthetic Aperture Radar Observations of Ocean Waves. J. Atm. Oce. 32, 83–112 (1994)CrossRefGoogle Scholar
  20. 20.
    Vachon, P.W., Liu, A.K., Jackson, F.C.: Near-shore Wave Evolution Observed by Airborne SAR during SWADE. J. Atm. Oce. 2, 363–381 (1995)Google Scholar
  21. 21.
    Zelina, Z.I., Arshad, A., Lee, S.C., Japar, S., Law, A., Nik Mustapha, R.A., Maged, M.M.: East coast of peninsular Malaysia. In: Sheppard, C. (ed.) Sea at The Millennium: An Environmental Evaluation, Oxford, vol. II, pp. 345–359 (2000)Google Scholar
  22. 22.
    Zebker, H.A.: The TOPSAR Interferometric Radar Topographic Mapping Instrument. IEEE Tran. Geos. Rem. Sen. 30, 933–940 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maged Marghany
    • 1
  1. 1.Institute of Geospatial Science and Technology (INSTeG)Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations