Elliptic Curve Cryptography on Constrained Microcontrollers Using Frequency Domain Arithmetic

  • Utku Gülen
  • Selçuk Baktır
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


We implemented elliptic curve cryptography in the frequency domain on the MSP430 constrained microcontroller. Our implementation of 169-bit elliptic curve cryptography (ECC) on MSP430, one of the most popular microcontrollers for wireless sensor network (WSN) nodes, performs an ECC scalar point multiplication operation, for random points, in only 1.55 ms which is similar to or faster than existing implementations. To our knowledge, this work proposes the first ever software implementation of ECC in the frequency domain on a constrained low-power microcontroller.


Elliptic curve cryptography ECC finite field multiplication discrete Fourier transform DFT frequency domain wireless sensor networks WSN MSP430 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Araz, O., Qi, H.: Load-balanced key establishment methodologies in wireless sensor networks. International Journal of Security and Networks 1(3), 158–166 (2006)CrossRefGoogle Scholar
  3. 3.
    Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient fpga implementations of lattice-based cryptography. In: HOST, pp. 81–86. IEEE (2013)Google Scholar
  4. 4.
    Bailey, D.V., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bailey, D.V., Paar, C.: Efficient Arithmetic in Finite Field Extensions with Application in Elliptic Curve Cryptography. Journal of Cryptology 14(3), 153–176 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Baktir, S.: Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography. PhD thesis, Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA (April 2008)Google Scholar
  7. 7.
    Baktir, S., Kumar, S., Paar, C., Sunar, B.: A state-of-the-art elliptic curve cryptographic processor operating in the frequency domain. Mobile Networks and Applications 12(4), 259–270 (2007)CrossRefGoogle Scholar
  8. 8.
    Baktir, S., Sunar, B.: Achieving efficient polynomial multiplication in fermat fields using the fast fourier transform. In: Proceedings of the 44th Annual Southeast Regional Conference, ACM-SE 44, pp. 549–554. ACM, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Baktır, S., Sunar, B.: Finite field polynomial multiplication in the frequency domain with application to elliptic curve cryptography. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 991–1001. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Baktır, S., Sunar, B.: Optimal extension field inversion in the frequency domain. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130, pp. 47–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Burrus, C.S., Parks, T.W.: DFT/FFT and Convolution Algorithms. John Wiley & Sons (1985)Google Scholar
  13. 13.
    Chen, D.D., Yao, G.X., Koç, Ç.K., Cheung, R.C.C.: Low complexity and hardware-friendly spectral modular multiplication. In: 2012 International Conference on Field-Programmable Technology (FPT), pp. 368–375 (2012)Google Scholar
  14. 14.
    Cheung, R.C.C., Koç, Ç.K., Villasenor, J.D.: A high-performance hardware architecture for spectral hash algorithm. In: ASAP, pp. 215–218 (2009)Google Scholar
  15. 15.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society, 393–422Google Scholar
  17. 17.
    Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of hardware building blocks for modern lattice-based encryption schemes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: A signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Kalach, K., David, J.P.: Hardware implementation of large number multiplication by FFT with modular arithmetic. In: Proceedings of the 3rd International IEEE-NEWCAS Conference, pp. 267–270. IEEE (2005)Google Scholar
  20. 20.
    Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata. Sov. Phys. Dokl. (English translation) 7(7), 595–596 (1963)Google Scholar
  21. 21.
    Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–209 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  23. 23.
    Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pollard, J.M.: The Fast Fourier Transform in a Finite Field. Mathematics of Computation 25, 365–374 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Rader, C.M.: Discrete Convolutions via Mersenne Transforms. IEEE Transactions on Computers C-21(12), 1269–1273 (1972)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Saldamli, G., Koç, Ç.K.: Spectral modular exponentiation. In: 18th IEEE Symposium on Computer Arithmetic, ARITH 2007, pp. 123–132 (2007)Google Scholar
  29. 29.
    Tolimieri, R., An, M., Lu, C.: Algorithms for Discrete Fourier Transform and Convolution. Springer (1989)Google Scholar
  30. 30.
    Walters, J.P., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security: A survey. Security in Distributed, Grid, Mobile, and Pervasive Computing 1, 367 (2007)Google Scholar
  31. 31.
    Wang, H., Sheng, B., Li, Q.: Elliptic curve cryptography-based access control in sensor networks. International Journal of Security and Networks 1(3), 127–137 (2006)CrossRefGoogle Scholar
  32. 32.
    Woodbury, A.D.: Efficient algorithms for elliptic curve cryptosystems on embedded systems. Master’s thesis, Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA (September 2001)Google Scholar
  33. 33.
    Woodbury, A.D., Bailey, D.V., Paar, C.: Elliptic curve cryptography on smart cards without coprocessors. Springer (2000)Google Scholar
  34. 34.
    Yao, G.X., Cheung, R.C.C., Koç, Ç.K., Man, K.F.: Reconfigurable number theoretic transform architectures for cryptographic applications. In: 2010 International Conference on Field-Programmable Technology (FPT), pp. 308–311 (2010)Google Scholar
  35. 35.
    Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials 10(1-4), 6–28 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Utku Gülen
    • 1
  • Selçuk Baktır
    • 1
  1. 1.Department of Computer EngineeringBahçeşehir UniversityIstanbulTurkey

Personalised recommendations