On the Localization of Zeros and Poles of Chebyshev-Padé Approximants from Perturbed Functions

  • João Carrilho de Matos
  • José Matos
  • Maria João Rodrigues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


We present some numerical results about the localization of zeros and poles of Chebyshev-Padé approximants from functions perturbed with random series. These results are a natural generalization of the Froissart’s numerical experiments with power series. Our results suggest that the Froissart doublets of Chebyshev-Padé approximants are located, with probability one, on the Joukowski transform image of the natural boundary of the random power series.


Froissart doublets Padé approximation Natural boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, G.A., Graves-Morris, P.R.: Padé Approximants, 2nd edn. Cambridge Univ. Press (1996)Google Scholar
  2. 2.
    Baker, G.A.: Defects and the convergence of Padé Approximants, LA-UR-99-1570, Los Alamos Nat. Lab. (1999)Google Scholar
  3. 3.
    Elliot, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comput. 18, 274–284 (1964)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gilewicz, J.: Approximants de Padé. Lecture notes in Mathematics. Springer (1978)Google Scholar
  5. 5.
    Gilewicz, J., Truong-Van, B.: Froissart doublets in the Padé approximants and noise. In: Sendov, B. (ed.) Construtive Theory of Function 1987, Varna, pp. 145–151. Publishing House of Bulgarian Academy of Science (1987)Google Scholar
  6. 6.
    Olver, F.W., et al.: NIST Hanbook of Mathematical Functions. Cambridge Univ. Press (2010)Google Scholar
  7. 7.
    Matos, A.C.: Recursive computation of Padé-Legendre; approximants and some acceleration properties. Numerische Mathematik 89, 535–560 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Szegő, G.: Orthogonal Polynomials. AMS (1967)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • João Carrilho de Matos
    • 1
  • José Matos
    • 1
  • Maria João Rodrigues
    • 2
  1. 1.Instituto Superior de Engenharia do PortoPortoPortugal
  2. 2.Faculdade de Ciências da Universidade do PortoPortugal

Personalised recommendations