Advertisement

A Visual Analytics System for Supporting Rock Art Knowledge Discovery

  • Vincenzo Deufemia
  • Valentina Indelli Pisano
  • Luca Paolino
  • Paola de Roberto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

This paper presents a visual analytics system, named DARK, for supporting rock art archaeologists in exploring repositories of rock art scenes each consisting of hundreds of petroglyphs carved by ancient people on rocks. With their increasing complexity, analyzing these repositories of heterogeneous information has become a major task and challenge for rock art archaeologists. DARK combines visualization techniques with fuzzy-based analysis of rock art scenes to infer information crucial for the correct interpretation of the scenes. Moreover, the DARK views allow archaeologists to validate their hypothesis against the information stored in the repository.

Keywords

visual analytics information visualization fuzzy analysis cultural heritage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bianchi, N.: Mount bego: prehistoric rock carvings. In: Adoranten, Scandinavian Society for Prehistoric Art, pp. 70–80 (2010)Google Scholar
  3. 3.
    Candela, L., Athanasopoulos, G., Castelli, D., El Raheb, K., Innocenti, P., Ioannidis, Y., Katifori, A., Nika, A., Vullo, G., Ross, S.: The digital library reference model. Technical Report Deliverable D3.2b, DL.org: Coordination Action on Digital Library Interoperability, Best Practices and Modelling Foundations. Funded under the 7th Framework Programme. Project Number 231551 (2011)Google Scholar
  4. 4.
    Casella, G., Deufemia, V., Mascardi, V., Costagliola, G., Martelli, M.: An agent-based framework for sketched symbol interpretation. J. Vis. Lang. Comput. 19(2), 225–257 (2008)CrossRefGoogle Scholar
  5. 5.
    Chippindale, C., Taçon, P.S.C.: The archaeology of rock-art. Cambridge University Press (1998)Google Scholar
  6. 6.
    Constantinidis, D.: Seeing is believing: The visual analysis of archaeological data. In: Proceedings of the 2002 Advanced Information Visualization in Archaeology Workshop (2002)Google Scholar
  7. 7.
    Costagliola, G., Polese, G.: Extended positional grammars. In: Proc. Int’l Conf. on Visual Languages, pp. 103–110 (2000)Google Scholar
  8. 8.
    Danese, M., Demar, U., Masini, N., Charlton, M.: Investigating material decay of historic buildings using visual analytics with multi-temporal infrared thermographic data. Archaeometry 52(3), 482–501 (2010)CrossRefGoogle Scholar
  9. 9.
    de Lumley, H., Echassoux, A.: The rock carvings of the chalcolithic and ancient bronze age from the mont bego area. the cosmogonic myths of the early metallurgic settlers in the southern alps. L’Anthropologie 113(5), 969–1004 (2009)CrossRefGoogle Scholar
  10. 10.
    Dean, J.S., Gumerman, G.J., Epstein, J.M., Axtell, R.L., Swedlund, A.C., Parker, M.T., McCarroll, S.: Understanding Anasazi Culture Change Through Agent-based Modeling. In: Dynamics in Human and Primate Societies, pp. 179–205. Oxford University Press, Oxford (2000)Google Scholar
  11. 11.
    Deufemia, V., Paolino, L., de Lumley, H.: Petroglyph recognition using self-organizing maps and fuzzy visual language parsing. In: Proc. of IEEE Int’l Conf. on Tools with Artificial Intelligence (ICTAI 2012), pp. 852–859 (2012)Google Scholar
  12. 12.
    Deufemia, V., Paolino, L., Tortora, G., Traverso, A., Mascardi, V., Ancona, M., Martelli, M., Bianchi, N., De Lumley, H.: Investigative analysis across documents and drawings: Visual analytics for archaeologists. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 2012, pp. 539–546. ACM, New York (2012)Google Scholar
  13. 13.
    Deufemia, V., Paolino, L.: Combining unsupervised clustering with a non-linear deformation model for efficient petroglyph recognition. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 128–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Deufemia, V., Risi, M., Tortora, G.: Sketched symbol recognition using latent-dynamic conditional random fields and distance-based clustering. Pattern Recognition 47(3), 1159–1171 (2014)CrossRefGoogle Scholar
  15. 15.
    Echassoux, A., de Lumley, H., Pecker, J.C., Rocher, P.: Les gravures rupestres des pléiades de la montagne sacrée du bego, tende, alpes-maritimes, france. Comptes Rendus Palevol 8(5), 461–469 (2009)CrossRefGoogle Scholar
  16. 16.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  17. 17.
    Huisman, O., Santiago, I.F., Kraak, M.J., Retsios, B.: Developing a geovisual analytics environment for investigating archaeological events: Extending the space-time cube. Cartography and Geographic Information Science 36(3), 225–236 (2009)CrossRefGoogle Scholar
  18. 18.
    Ibrahim, Z.M., Tawfik, A.Y.: Spatio-temporal reasoning for vague regions. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, pp. 308–321. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Inkpen, R., Duane, B., Burdett, J., Yates, T.: Assessing stone degradation using an integrated database and geographical information system (gis). Environmental Geology 56(3-4), 789–801 (2008)CrossRefGoogle Scholar
  20. 20.
    Jennings, N.R., Sycara, K.P., Wooldridge, M.: A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)CrossRefGoogle Scholar
  21. 21.
    Kohler, T.A., Kresl, J., van West, C., Carr, E., Wilshusen, R.H.: Be There then: A Modeling Approach to Settlement Determinants and Spatial Efficiency Among Late Ancestral Pueblo Populations of the Mesa Verde Region, U.S. Southwest. In: Dynamics in Human and Primate Societies, pp. 145–178. Oxford University Press, Oxford (2000)Google Scholar
  22. 22.
    Lin, S.K.: Rock art science: The scientific study of palaeoart, 2nd edn. Arts, vol. 2(1), pp. 1–2 (2013)Google Scholar
  23. 23.
    Lock, G., Stancic, Z.: Archaeology and GIS: A European Perspective. Taylor and Francis (1995)Google Scholar
  24. 24.
    Mascardi, V., Deufemia, V., Malafronte, D., Ricciarelli, A., Bianchi, N., de Lumley, H.: Rock art interpretation within indiana MAS. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327, pp. 271–281. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Randell, D.A., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  26. 26.
    Salamat, N., Zahzah, E.H.: Two-dimensional fuzzy spatial relations: A new way of computing and representation. Advances in Fuzzy Systems 2012, 1–15 (2012)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Seidl, M., Breiteneder, C.: Detection and classification of petroglyphs in gigapixel images – preliminary results. In: VAST11: The 12th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers, pp. 45–48 (2011)Google Scholar
  28. 28.
    Seidl, M., Breiteneder, C.: Automated petroglyph image segmentation with interactive classifier fusion. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2012, pp. 66:1–66:8. ACM, New York (2012)CrossRefGoogle Scholar
  29. 29.
    Valtolina, S., Barricelli, B.R., Gianni, G.B., Bortolotto, S.: ArchMatrix: Knowledge management and visual analytics for archaeologists. In: Yamamoto, S. (ed.) HIMI/HCII 2013, Part III. LNCS, vol. 8018, pp. 258–266. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    van Leusen, P.: GIS and archaeological resource management: a European agenda. In: Archaeology and GIS: A European Perspective, pp. 27–41. Taylor & Francis (1995)Google Scholar
  31. 31.
    Viviana, M., Briola, D., Locoro, A., Grignani, D., Deufemia, V., Paolino, L., Bianchi, N., de Lumley, H., Malafronte, D., Ricciarelli, A.: A holonic multi-agent system for sketch, image and text interpretation in the rock art domain. International Journal of Innovative Computing, Information and Control (IJICIC) 10(1), 81–100 (2014)Google Scholar
  32. 32.
    Whitley, D.: Handbook of rock art research. G - Reference, Information and Interdisciplinary Subjects Series. AltaMira Press, Beverly Hills (2001)Google Scholar
  33. 33.
    Williams, M.: Archaeology and gis: Prehistoric habitat reconstruction. In: Proceedings of ESRI User Conference (2004)Google Scholar
  34. 34.
    Zhang, J., Kang, K., Liu, D., Yuan, Y., Yanli, E.: Vis4heritage: Visual analytics approach on grotto wall painting degradations. IEEE Transactions on Visualization and Computer Graphics 19(12), 1982–1991 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhu, Q., Wang, X., Keogh, E., Lee, S.H.: An efficient and effective similarity measure to enable data mining of petroglyphs. Data Mining and Knowledge Discovery 23(1), 91–127 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vincenzo Deufemia
    • 1
  • Valentina Indelli Pisano
    • 1
  • Luca Paolino
    • 1
  • Paola de Roberto
    • 1
  1. 1.Department of Management and Information TechnologyUniversity of SalernoFisciano(SA)Italy

Personalised recommendations