Implementation Aspects of the 3D Wave Propagation in Semi-infinite Domains Using the Finite Difference Method on a GPU Based Cluster

  • Thales Luis Sabino
  • Diego Brandão
  • Marcelo Zamith
  • Esteban Clua
  • Anselmo Montenegro
  • Mauricio Kischinhevsky
  • André Bulcão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


The scattering of acoustic waves has been a matter of practical interest for the petroleum industry, mainly in the determination of new oil deposits. A family of computational models that represent this phenomenon is based on Finite Difference Methods (FDM). The simulation of these phenomena demands a high computational processing power and large amounts of memory. Furthermore, solving this problem in a high performance computing (HPC) environment requires the use of tools such as MPI (Message Passing Interface) and GPUs in order to soften the effort necessary on implementation. In this work a GPU based cluster environment is employed for the development of an efficient scalable solver for a 3D wave propagation problem using the FDM. The details related to the implementation of the FDM applied to wave propagation in GPUs are presented. A performance analysis for several simulations is also discussed. The solution discussed herein is suitable not only for a single GPU system, but for clusters of GPUs as well.


Wave Propagation Finite Difference Method GPU Cluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balevic, A., Rockstroh, L., Tausendfreund, A., Patzelt, S., Goch, G., Simon, S.: Accelerating Simulations of Light Scattering Based on Finite-Difference Time-Domain Method with General Purpose GPUs. In: IEEE International Conference on Computational Science and Engineering, pp. 327–334 (2008)Google Scholar
  2. 2.
    Brandao, D., Zamith, M., Montenegro, A.A., Clua, E., Kischinhevsky, M., Leal-Toledo, R.C.P., Madeira, D., Bulcao, A.: Performance Evaluation of Optimized Implementations of Finite Difference Method for Wave Propagation Problems on GPU Architecture. In: 22nd International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), pp. 7–12 (2010)Google Scholar
  3. 3.
    Micikevicius, P.: 3D Finite Difference Computation on GPUs using CUDA ACM. In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84 (2009)Google Scholar
  4. 4.
    Sabino, T.L.R., Zamith, M., Brandao, D., Montenegro, A.A., Clua, E., Kischinhevsky, M., Leal-Toledo, R.C.P., Teixeira-Filho, O.S., Bulcao, A.: Scalable Simulation of 3D Wave Propagation in Semi-Infinite Domains Using the Finite Difference Method on a GPU Based Cluster. In: Proceedings of the V e-Science Workshop, Congress of Brazilian Computer Society, pp. 110–118 (2011)Google Scholar
  5. 5.
    Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming on GPU Graphics Cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bolz, J., Farmer, I., Grinspun, E., Schroder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Transactions on Graphics: Proceedings of ACM SIGGRAPH, 917–924 (2003)Google Scholar
  7. 7.
    Abbas-Turki, L.A., Lapeyre, B.: American Options Pricing on Multicore Graphic Cards. In: International Conference on Business Intelligence and Financial Engineering, pp. 307–311 (2009)Google Scholar
  8. 8.
    Rozen, T., Boryczko, K., Alda, W.: A GPU-based method for approximate real-time fluid flow simulation. Machine Graphics and Vision International Journal 17(3), 267–278 (2008)Google Scholar
  9. 9.
    Michea, D., Komatisch, D.: Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards. Geophysical Journal International 182, 389–402 (2010)Google Scholar
  10. 10.
    Reynolds, A.C.: Boundary Condition for the Numerical Solution of Wave Propagation Problems. Geophysics 43, 1099–1110 (1978)CrossRefGoogle Scholar
  11. 11.
    Bording, R.P., Lines, L.R.: Seismic Modeling and Imaging with the Complete Wave Equation. Society of Exploration Geophysicists, Tulsa (1997)CrossRefGoogle Scholar
  12. 12.
    Juntunen, J.S., Tsiboukis, T.D.: Reduction of Numerical Dispersion in FDTD Method Through Artificial Anisotropy. Transactions on Microwave Theory and Techniques 48(4), 582–588 (2000)CrossRefGoogle Scholar
  13. 13.
    Mitchell, A.R.: Computational Methods in Partial Differential Equations. John Wiley and Sons (1969)Google Scholar
  14. 14.
    Ames, W.F.: Numerical Methods for Partial Differential Equations. Mathematics of Computation 62 (1994)Google Scholar
  15. 15.
    NVIDIA: NVDIA - CUDA Programming Guide (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thales Luis Sabino
    • 1
  • Diego Brandão
    • 2
  • Marcelo Zamith
    • 3
  • Esteban Clua
    • 1
  • Anselmo Montenegro
    • 1
  • Mauricio Kischinhevsky
    • 1
  • André Bulcão
    • 4
  1. 1.Instituto de ComputaçãoUniversidade Federal FluminenseNiteróiBRA
  2. 2.Centro Federal de Ensino Tecnológico (CEFET-RJ)Nova IguaçuBRA
  3. 3.Universidade Federal de ViçosaFlorestalBRA
  4. 4.CENPESPetrobrásBRA

Personalised recommendations