Link Prediction in Online Social Networks Using Group Information

  • Jorge Carlos Valverde-Rebaza
  • Alneu de Andrade Lopes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


Users of online social networks voluntarily participate in different user groups or communities. Researches suggest the presence of strong local community structure in these social networks, i.e., users tend to meet other people via mutual friendship. Recently, different approaches have considered communities structure information for increasing the link prediction accuracy. Nevertheless, these approaches consider that users belong to just one community. In this paper, we propose three measures for the link prediction task which take into account all different communities that users belong to. We perform experiments for both unsupervised and supervised link prediction strategies. The evaluation method considers the links imbalance problem. Results show that our proposals outperform state-of-the-art unsupervised link prediction measures and help to improve the link prediction task approached as a supervised strategy.


Link prediction social networks communities social network analysis graph mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benchettara, N., Kanawati, R., Rouveirol, C.: A supervised machine learning link prediction approach for academic collaboration recommendation. In: RecSys 2010, pp. 253–256 (2010)Google Scholar
  2. 2.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1-6), 309–320 (2000)CrossRefGoogle Scholar
  3. 3.
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schlogl, A., Birch, G.E.: Comparison of evaluation metrics in classification applications with imbalanced datasets. In: ICMLA 2008, pp. 777–782 (2008)Google Scholar
  5. 5.
    Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM 2006 Workshop on Link Analysis, Counterterrorism and Security (2006)Google Scholar
  6. 6.
    Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)Google Scholar
  7. 7.
    Hoseini, E., Hashemi, S., Hamzeh, A.: Link prediction in social network using co-clustering based approach. In: WAINA 2012, pp. 795–800. IEEE (2012)Google Scholar
  8. 8.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. JASIST 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  9. 9.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: ACM SIGKDD KDD 2010, pp. 243–252. ACM (2010)Google Scholar
  10. 10.
    Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)CrossRefGoogle Scholar
  11. 11.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: ACM SIGCOMM IMC 2007, pp. 29–42. ACM (2007)Google Scholar
  12. 12.
    Soundarajan, S., Hopcroft, J.: Using community information to improve the precision of link prediction methods. In: WWW 2012, pp. 607–608. ACM (2012)Google Scholar
  13. 13.
    Valverde-Rebaza, J., de Andrade Lopes, A.: Link prediction in complex networks based on cluster information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS (LNAI), vol. 7589, pp. 92–101. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Valverde-Rebaza, J., de Andrade Lopes, A.: Structural Link Prediction Using Community Information on Twitter. In: CASoN 2012, pp. 132–137. IEEE (2012)Google Scholar
  15. 15.
    Valverde-Rebaza, J., de Andrade Lopes, A.: Exploiting behaviors of communities of Twitter users for link prediction. Social Network Analysis and Mining 3(4), 1063–1074 (2013)CrossRefGoogle Scholar
  16. 16.
    Yin, D., Hong, L., Davison, B.D.: Structural link analysis and prediction in microblogs. In: CIKM 2011, pp. 1163–1168 (2011)Google Scholar
  17. 17.
    Zhang, Q.-M., Lü, L., Wang, W.-Q., Zhu, Y.-X., Zhou, T.: Potential theory for directed networks. PLoS ONE 8(2), e55437 (2013)CrossRefGoogle Scholar
  18. 18.
    Zheleva, E., Getoor, L., Golbeck, J., Kuter, U.: Using friendship ties and family circles for link prediction. In: Giles, L., Smith, M., Yen, J., Zhang, H. (eds.) SNAKDD 2008. LNCS, vol. 5498, pp. 97–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jorge Carlos Valverde-Rebaza
    • 1
  • Alneu de Andrade Lopes
    • 1
  1. 1.Departamento de Ciências de Computação, Instituto de Ciências Matemáticas e de ComputaçãoUniversity of São PauloSão CarlosBrazil

Personalised recommendations