Skip to main content

Multi-Objective Evolutionary Algorithm for Oil Spill Detection from COSMO-SkeyMed Satellite

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8584)

Abstract

This study has demonstrated a design tool for oil spill detection in COSMO-SkyMed satellite data using Multi-Objective Evolutionary Algorithmwhich based on Pareto optimal solutions. The COSMO-SkyMed along the Gulf of Thailand is involved in this study. The study also shows that Multi-Objective Evolutionary Algorithmprovides an accurate pattern of oil slick in COSMO-SkyMed data. This shown by 96% for oil spill, 1% look–alike and 3% for sea roughness using the receiver –operational characteristics (ROC) curve. The MOGA also shows excellent performance in COSMO-SkyMed data. In conclusion, Multi-Objective Evolutionary Algorithmcan be used as an automatic detection tool for oil spill in COSMO-SkyMed satellite data.

Keywords

  • Multi-Objective Evolutionary Algorithm
  • COSMO-SkyMed
  • oil spill
  • Pareto optimal solutions
  • Automatic detection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-09153-2_27
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-09153-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.A.: Specialties: Solar Wings, Oil Spill Avoidance, On-Line Patterns. IEEE Spect. 32, 87–95 (1995)

    CrossRef  Google Scholar 

  2. Aggoune, M.E., Atlas, L.E., Cohn, D.A., El-Sharkawi, M.A., Marks, R.J.: Artificial Neural Networks For Power System Static Security Assessment. IEEE Int. Sym. on Cir. and Syst. Portland, Oregon, pp. 490–494 (1989)

    Google Scholar 

  3. Brekke, C., Solberg, A.: Oil Spill Detection by Satellite Remote Sensing. Rem. Sens. of Env. 95, 1–13 (2005)

    CrossRef  Google Scholar 

  4. Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., Trivero, P.: Oil Spill Detection Using Marine SAR Images. Int. J. of Rem. Sens. 21, 3561–3566 (2000)

    CrossRef  Google Scholar 

  5. Frate, F.D., Petrocchi, A., Lichtenegger, J., Calabresi, G.: Neural Networks for Oil Spill Detection Using ERS-SAR Data. IEEE Tran. on Geos. and Rem. Sens. 38, 2282–2287 (2000)

    CrossRef  Google Scholar 

  6. Hect-Nielsen, R.: Theory of the Back Propagation Neural Network. In: Proc. of the Int. Joint Conf. on Neu. Net., pp. 593–611. IEEE Press (1989)

    Google Scholar 

  7. Marghany, M., Hashim, M.: Comparative algorithms for oil spill detection from multi mode RADARSAT-1 SAR satellite data. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 318–329. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  8. Marghany, M.: RADARSAT Automatic Algorithms for Detecting Coastal Oil Spill Pollution. Int. J. of App. Ear. Obs. and Geo. 3, 191–196 (2001)

    CrossRef  Google Scholar 

  9. Marghany, M.: RADARSAT for Oil spill Trajectory Model. Env. Mod. and Sof. 19, 473–483 (2004)

    CrossRef  Google Scholar 

  10. Marghany, M., Cracknell, A.P., Hashim, M.: Modification of Fractal Algorithm for Oil Spill Detection from RADARSAT-1 SAR Data. Int. J. of App. Ear. Obs. and Geo. 11, 96–102 (2009)

    CrossRef  Google Scholar 

  11. Marghany, M., Cracknell, A.P., Hashim, M.: Comparison between Radarsat-1 SAR Different Data Modes for Oil Spill Detection by a Fractal Box Counting Algorithm. Int. J. of Dig. Ear. 2, 237–256 (2009)

    CrossRef  Google Scholar 

  12. Marghany, M., Hashim, M., Cracknell, A.P.: Fractal Dimension Algorithm for Detecting Oil Spills Using RADARSAT-1 SAR. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 1054–1062. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  13. Marghany, M., Hashim, M.: Texture Entropy Algorithm for Automatic Detection of Oil Spill from RADARSAT-1 SAR data. Int. J. of the Phy. Sci. 5, 1475–1480 (2010)

    Google Scholar 

  14. Michael, N.: Artificial Intelligence: A guide to Intelligent Systems, 2nd edn. Addison Wesley, Harlow (2005)

    Google Scholar 

  15. Migliaccio, M., Gambardella, A., Tranfaglia, M.: SAR Polarimetry to Observe Oil Spills. IEEE Tran. on Geos. and Rem. Sen. 45, 506–511 (2007)

    CrossRef  Google Scholar 

  16. Mohamed, I.S., Salleh, A.M., Tze, L.C.: Detection of Oil Spills in Malaysian Waters from RADARSAT Synthetic Aperture Radar Data and Prediction of Oil Spill Movement. In: Proc. of 19th Asi. Conf. on Rem. Sen., Hong Kong, China, November 23-27, vol. 2, pp. 980–987. Asian Remote Sensing Society, Japan (1999)

    Google Scholar 

  17. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Lear. 42, 203–231 (2001)

    CrossRef  MATH  Google Scholar 

  18. Samad, R., Mansor, S.B.: Detection of Oil Spill Pollution Using RADARSAT SAR Imagery. In: CD Proc. of 23rd Asi. Conf. on Rem. Sens., Birendra International Convention Centre in Kathmandu, Nepal, November 25-29, Asian Remote Sensing (2002)

    Google Scholar 

  19. Skrunes, S., Brekke, C., Eltoft, T.: An Experimental Study on Oil Spill Characterization by Multi-Polarization SAR. In: Proc. European Conference on Synthetic Aperture Radar, Nuremberg, Germany, pp. 139–142 (2012)

    Google Scholar 

  20. Topouzelis, K., Karathanassi, V., Pavlakis, P., Rokos, D.: Potentiality of Feed-Forward Neural Networks for Classifying Dark Formations to Oil Spills and Look-alikes. Geo. Int. 24, 179–191 (2009)

    CrossRef  Google Scholar 

  21. Topouzelis, K., Karathanassi, V., Pavlakis, P., Rokos, D.: Detection and Discrimination between Oil Spills and Look-alike Phenomena through Neural Networks. ISPRS J. Photo. Rem. Sens. 62, 264–270 (2007)

    CrossRef  Google Scholar 

  22. Topouzelis, K.N.: Oil Spill Detection by SAR Images: Dark Formation detection, Feature Extraction and Classification Algorithms. Sens. 8, 6642–6659 (2008)

    CrossRef  Google Scholar 

  23. Trivero, P., Fiscella, B., Pavese, P.: Sea Surface Slicks Measured by SAR. Nuo. Cim. 24C, 99–111 (2001)

    Google Scholar 

  24. Trivero, P., Fiscella, B., Gomez, F., Pavese, P.: SAR Detection and Characterization of Sea Surface Slicks. Int. J. Rem. Sen. 19, 543–548 (1998)

    CrossRef  Google Scholar 

  25. Velotto, D., Migliaccio, M., Nunziata, F., Lehner, S.: Dual-Polarized TerraSAR-X Data for Oil-Spill Observation. IEEE Trans. Geosci. Remote Sens. 49, 4751–4762 (2011)

    CrossRef  Google Scholar 

  26. Chaiyaratana, N., Zalzala, A.M.S.: Recent developments in evolutionary and genetic algorithms: theory and applications. In: Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA 1997, Glasgow, September 2-4, pp. 270–277 (1997)

    Google Scholar 

  27. Kahlouche, S., Achour, K., Benkhelif, M.: Proceedings of the 2002 WSEAS International Conferences, Cadiz, Spain, June 12-16, pp. 1–5 (2002), www.wseas.us/e-library/conferences/spain2002/papers/443-164.pdf

  28. Gautam, G., Chaudhuri, B.B.: A distributed hierarchical genetic algorithm for efficient optimization and pattern matching. Pattern Recognition Journal 40, 212–228 (2007)

    CrossRef  MATH  Google Scholar 

  29. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  30. Marghany, M.: Genetic Algorithm for Oil Spill Automatic Detection from Envisat Satellite Data. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 587–598. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  31. Marghany, M.: Genetic Algorithm for Oil Spill Automatic Detection from Multisar Satellite Data. In: Proceedings of the 34th Asian Conference on Remote Sensing 2013, Bali, Indonesia, October 20-24, pp. SC03-671-SC0-3677 (2013)

    Google Scholar 

  32. Zhang, B., Perrie, W., Li, X., Pichel, W.: Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 38, L10602 (2011)

    Google Scholar 

  33. Zhang, Y., Lin, H., Liu, Q., Hu, J., Li, X., Yeung, K.: Oil-spill monitoring in the coastal waters of Hong Kong and vicinity. Marine Geodesy 35, 93–106 (2012)

    CrossRef  Google Scholar 

  34. Shirvany, R., Chabert, M., Tourneret, J.-Y.: Tourneret: Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5, 885–892 (2012)

    CrossRef  Google Scholar 

  35. Trivero, P., Biamino, W., Nirchio, F.: High resolution COSMO - SkyMed SAR images for oil spills automatic detection. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, pp. 2–5 (2007)

    Google Scholar 

  36. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  37. Yudong, Z., Shuihua, W., Genlin, J., Zhengchao, D.: Genetic Pattern Search and Its Application to Brain Image Classification. Math. Prob. in Eng., 1–8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marghany, M. (2014). Multi-Objective Evolutionary Algorithm for Oil Spill Detection from COSMO-SkeyMed Satellite. In: , et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09153-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09152-5

  • Online ISBN: 978-3-319-09153-2

  • eBook Packages: Computer ScienceComputer Science (R0)