Advertisement

Heuristics for Semantic Path Search in Wikipedia

  • Valentina Franzoni
  • Marco Mencacci
  • Paolo Mengoni
  • Alfredo Milani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

In this paper an approach based on Heuristic Semantic Walk (HSW) is presented, where semantic proximity measures among concepts are used as heuristics in order to guide the concept chain search in the collaborative network of Wikipedia, encoding problem-specific knowledge in a problem-independent way. Collaborative information and multimedia repositories over the Web represent a domain of increasing relevance, since users cooperatively add to the objects tags, label, comments and hyperlinks, which reflect their semantic relationships, with or without an underlying structure. As in the case of the so called Big Data, methods for path finding in collaborative web repositories require solving major issues such as large dimensions, high connectivity degree and dynamical evolution of online networks, which make the classical approach ineffective. Experiments held on a range of different semantic measures show that HSW lead to better results than state of the art search methods, and points out the relevant features of suitable proximity measures for the Wikipedia concept network. The extracted semantic paths have many relevant applications such as query expansion, synthesis of explanatory arguments, and simulation of user navigation.

Keywords

heuristics search semantic networks collaborative networks semantic similarity measures random walk information retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollegala, D., Matsuo, Y., Ishizukain, M.: A Web Search Engine-Based Approach to Measure Semantic Similarity between Words. IEEE Transactions on Knowledge and Data Engineering (2011)Google Scholar
  2. 2.
    Cilibrasi, R., Vitanyi, P.: The Google Similarity Distance. ArXiv.org (2004)Google Scholar
  3. 3.
    Church, K.W., Hanks, P.: Word association norms, mutual information and lexicography. In: ACL, vol. 27 (1989)Google Scholar
  4. 4.
    Franzoni, V., Milani, A.: PMING Distance: A Collaborative Semantic Proximity Measure. In: WI-IAT, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 442–449 (2012)Google Scholar
  5. 5.
    Kurant, M., Markopoulou, A., Thiran, P.: On the bias of BSF. ITC (2010)Google Scholar
  6. 6.
    Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. WIKIAI (2008)Google Scholar
  7. 7.
    Yeh, E., Ramage, D., Manning, C.D., Agirre, E., Soroa, A.: WikiWalk: Random walks on Wikipedia for Semantic Relatedness. In: Proc. Graph-based Methods for Natural Language Processing (2009)Google Scholar
  8. 8.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. University of Michigan, MI (2003)Google Scholar
  9. 9.
    Cao, G., Gao, J., Nie, J.Y., Bai, J.: Extending query translation to cross-language query expansion with markov chain models. CIKM, ATM (2007)Google Scholar
  10. 10.
    Turney, P.D.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Xu, Z., Luo, X., Yu, J., Xu, W.: Measuring semantic similarity between words by removing noise and redundancy in web snippets. Concurrency Computat: PE 23 (2011)Google Scholar
  12. 12.
    Wu, L., Hua, X.S., Yu, N., Ma, W.Y., Li, S.: Flickr Distance. Microsoft Research Asia (2008)Google Scholar
  13. 13.
    Leung, C.H.C., Li, Y., Milani, A., Franzoni, V.: Collective Evolutionary Concept Distance Based Query Expansion for Effective Web Document Retrieval. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 657–672. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Gori, M.,, P.: A random-walk based scoring algorithm with application to recommender systems for large-scale e-commerce. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)Google Scholar
  15. 15.
    Franzoni, V., Milani, A.: Heuristic Semantic Walk. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 643–656. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comp. Com. App (2006)Google Scholar
  17. 17.
    Franzoni, V., Milani, A.: Heuristic semantic walk for concept chaining in collaborative networks. International Journal of Web Information Systems 10(1), 85–103 (2014), doi:10.1108/IJWIS-11-2013-0031CrossRefGoogle Scholar
  18. 18.
    Franzoni, V., Milani, A., Mengoni, P., Mencacci, M.: Semantic Heuristic Search in Collaborative Networks: Measures and Contexts. In: WI-IAT, 2014 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (2014) (accepted for)Google Scholar
  19. 19.
    Cheng, V.C., Leung, C.H.C., Liu, J., Milani, A.: Probabilistic Aspect Mining Model for Drug Reviews. IEEE Transactions on Knowledge and Data Engineering 99, 1 (preprint, 2014), doi:10.1109/TKDE.2013.175Google Scholar
  20. 20.
    Milani, A., Santucci, V.: Community of scientist optimization: An autonomy oriented approach to distributed optimization. AI Commun. 25(2), 157–172 (2012), doi:10.3233/AIC-2012-0526MathSciNetGoogle Scholar
  21. 21.
    Leung, C.H.C., Chan, A.W.S., Milani, A., Liu, J., Li, Y.: Intelligent Social Media Indexing and Sharing Using an Adaptive Indexing Search Engine. ACM TIST 3(3), 47 (2012), doi:10.1145/2168752.2168761Google Scholar
  22. 22.
    Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evaluation of pheromone models in ACOPlan. Ann. Math. Artif. Intell. 62(3-4), 187–217 (2011), doi:10.1007/s10472-011-9265-7CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Valentina Franzoni
    • 1
  • Marco Mencacci
    • 1
  • Paolo Mengoni
    • 1
  • Alfredo Milani
    • 1
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly
  2. 2.Department of Computer ScienceHong Kong Baptist UniversityHong Kong

Personalised recommendations