Advertisement

Iterative Remeshing for Edge Length Interval Constraining

  • João Vitor de Sá Hauck
  • Ramon Nogueira da Silva
  • Marcelo Bernardes Vieira
  • Rodrigo Luis de Souza da Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)

Abstract

This paper presents an iterative method to remesh an arbitrary surface into a mesh with all edge lengths within an interval. The process starts with a triangular 2-manifold mesh. It uses stellar operations to achieve the necessary amount of vertices and triangles. Subsequently, it applies a constrained version of the Laplacian filter in order achieve a more uniform distribution of the vertices over the surface. In order to prevent the natural shrink caused by the Laplacian filter, we perform a projection over the original surface. We also apply a post processing step to correct the lengths of troubling edges. Our method results in a regular mesh, with vertices uniformly distributed. The dual mesh obtained can be useful for several applications. The main contribution of this work is a new approach for edge length equalization, with explicit constraints definition, lower global geometry losses and lower memory cost if compared to previous works.

Keywords

iterative remeshing edge length equalization interval constraining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rocchini, C., Cignoni, P., Montani, C., Pingi, P., Scopigno, R.: A low cost 3d scanner based on structured light. Computer Graphics Forum 20(3), 299–308 (2001)CrossRefGoogle Scholar
  2. 2.
    Vieira, M.B., Velho, L., Sa, A., Carvalho, P.C.: A camera-projector system for real-time 3d video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, CVPR Workshops, pp. 96–96. IEEE (2005)Google Scholar
  3. 3.
    Dembogurski, R., Dembogurski, B., de Souza da Silva, R.L., Vieira, M.B.: Interactive mesh generation with local deformations in multiresolution. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 646–661. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Schöberl, J.: Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Computing and Visualization in Science 1(1), 41–52 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Iijima, S., et al.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  6. 6.
    Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, New York (1996)Google Scholar
  7. 7.
    Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph. 77, 1–77 (2009)CrossRefGoogle Scholar
  8. 8.
    Ray, N., Vallet, B., Li, W.C., Lévy, B.: N-symmetry direction field design. ACM Transactions on Graphics (2008); Presented at SIGGRAPHGoogle Scholar
  9. 9.
    Huang, J., Zhang, M., Pei, W., Hua, W., Bao, H.: Controllable highly regular triangulation. Science China Information Sciences 54(6), 1172–1183 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Pampanelli, P.C.P.: Mesh generation through the mapping of triangular models into rhomboid space. M.sc. dissertation, Universidade Federal de Juiz de Fora, Advisor: Marcelo Bernardes Vieira, Co-advisors: Marcelo Lobosco and Sócrates de Oliveira Dantas (2011)Google Scholar
  11. 11.
    Pampanelli, P.P., Peanha, J., Campos, A.M., Vieira, M.B., Lobosco, M., de Oliveira Dantas, S.: Rectangular hexagonal mesh generation for parametric modeling. In: 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp. 120–125. IEEE (2009)Google Scholar
  12. 12.
    Pietroni, N., Tarini, M., Cignoni, P.: Almost isometric mesh parameterization through abstract domains. IEEE Transactions on Visualization and Computer Graphics 16(4), 621–635 (2010)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Pan, H., Snyder, J., Wang, W., Guo, B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32(4), 92:1–92:10 (2013)Google Scholar
  14. 14.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 185–192. ACM (2004)Google Scholar
  16. 16.
    Surazhsky, V., Gotsman, C.: High quality compatible triangulations. Engineering with Computers 20(2), 147–156 (2004)Google Scholar
  17. 17.
    de Oliveira, J.P.P.N.: Iterative method for edge length equalization. In: International Conference on Computational Science, Barcelona, Spain, pp. 481–490 (2013)Google Scholar
  18. 18.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 351–358. ACM, New York (1995)CrossRefGoogle Scholar
  19. 19.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. ACM Trans. Graph. 21(3), 347–354 (2002)CrossRefGoogle Scholar
  20. 20.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • João Vitor de Sá Hauck
    • 1
  • Ramon Nogueira da Silva
    • 1
  • Marcelo Bernardes Vieira
    • 1
  • Rodrigo Luis de Souza da Silva
    • 1
  1. 1.Departamento de Ciência da ComputaçãoUniversidade Federal de Juiz de ForaJuiz de Fora-MGBrazil

Personalised recommendations