A Strength Pareto Approach to Solve the Reporting Cells Planning Problem

  • Víctor Berrocal-Plaza
  • Miguel A. Vega-Rodríguez
  • Juan M. Sánchez-Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8584)


This work addresses a multiobjective approach of the Reporting Cells Planning Problem. This optimization problem models a well-known strategy to manage the subscribers’ movement in mobile networks. Our approach can be considered as a novel contribution because, to the best of the authors’ knowledge, there are no other works in the literature that tackle this problem with multiobjective optimization techniques. Two are the main reasons for using a multiobjective approach. Firstly, we avoid the drawbacks associated with the linear aggregation of objective functions. And secondly, a multiobjective optimization algorithm provides (in a single run) a wide range of solutions, among which the network operator could select the one that best adjusts to the real state of the signaling network. In this work, we propose our version of the Strength Pareto Evolutionary Algorithm 2 (SPEA2), a well-known multiobjective evolutionary algorithm. We have checked the quality of our algorithm by means of an experimental study. This study clarifies that our proposal is very interesting because it achieves good Pareto Fronts and, at the same time, it outperforms the results obtained by other algorithms published in the literature.


Reporting Cells Planning Problem Mobile Location Management Multiobjective Optimization Strength Pareto Evolutionary Algorithm 2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, D., Zeng, Q.: Introduction to Wireless and Mobile Systems. Cengage Learning (2010)Google Scholar
  2. 2.
    Kyamakya, K., Jobmann, K.: Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Transactions on Vehicular Technology 54(2), 687–708 (2005)CrossRefGoogle Scholar
  3. 3.
    Mukherjee, A., Bandyopadhyay, S., Saha, D.: Location Management and Routing in Mobile Wireless Networks. Artech House mobile communications series. Artech House (2003)Google Scholar
  4. 4.
    Subrata, R., Zomaya, A.Y.: A comparison of three artificial life techniques for Reporting Cell planning in mobile computing. IEEE Trans. Parallel Distrib. Syst. 14(2), 142–153 (2003)CrossRefGoogle Scholar
  5. 5.
    Alba, E., García-Nieto, J., Taheri, J., Zomaya, A.Y.: New research in nature inspired algorithms for mobility management in GSM networks. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 1–10. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying differential evolution to the Reporting Cells problem. In: International Multiconference on Computer Science and Information Technology, pp. 65–71 (2008)Google Scholar
  7. 7.
    Almeida-Luz, S.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the reporting cells problem using a scatter search based algorithm. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 534–543. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100. International Center for Numerical Methods in Engineering (2001)Google Scholar
  9. 9.
    Bar-Noy, A., Kessler, I.: Tracking mobile users in wireless communications networks. IEEE Transactions on Information Theory 39(6), 1877–1886 (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hac, A., Zhou, X.: Locating strategies for Personal Communication Networks: A novel tracking strategy. IEEE Journal on Selected Areas in Communications 15(8), 1425–1436 (1997)CrossRefGoogle Scholar
  11. 11.
    Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus (2006)Google Scholar
  12. 12.
    Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland (1998)Google Scholar
  13. 13.
    ILOG, Inc.: ILOG CPLEX: High-performance software for mathematical programming and optimization (2006),
  14. 14.
    Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear Optimization with the MADS Algorithm. ACM Transactions on Mathematical Software 37(4), 44:1–44:15 (2011)Google Scholar
  15. 15.
    Currie, J., Wilson, D.I.: OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User. In: Foundations of Computer-Aided Process Operations, Georgia, USA (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Víctor Berrocal-Plaza
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  • Juan M. Sánchez-Pérez
    • 1
  1. 1.Dept. of Computers & Communications TechnologiesUniversity of Extremadura Escuela PolitécnicaCáceresSpain

Personalised recommendations