Skip to main content

A Physical-Geometric Approach to Model Thin Dynamical Structures in CAD Systems

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8581))

Included in the following conference series:

  • 2414 Accesses

Abstract

The efficient accurate modeling of thin, approximately one-dimensional structures, like cables, fibers, threads, tubes, wires, etc. in CAD systems is a complicated task since the dynamical behavior has to be computed at interactive frame rates to enable a productive workflow. Traditional physical methods often have the deficiency that the solution process is expensive and heavily dependent on minor details of the underlying geometry and the configuration of the applied numerical solver. In contrast, pure geometrical methods are not able to handle all occurring effects in an accurate way.

To overcome this shortcomings, we present a novel and general hybrid physical-geometric approach: the structure’s dynamics is handled in a physically accurate way based on the special Cosserat theory of rods capable of capturing effects like bending, twisting, shearing, and extension deformations, while collisions are resolved using a fast geometric sweep strategy which is robust under different numerical and geometric resolutions.

As a result, fast editable high quality tubes can easily be designed including their dynamical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer (1996)

    Google Scholar 

  2. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proceedings of the National Academy of Sciences of the United States of America 38(3), 235–243 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rosenblum, R.E., Carlson, W.E., Tripp, E.: Simulating the structure and dynamics of human hair: Modeling, rendering and animation. The Journal of Visualization and Computer Animation 2(4), 141–148 (1991)

    Article  Google Scholar 

  4. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., Lévêque, J.-L.: Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (TOG) 25(3), 1180–1187 (2006)

    Article  Google Scholar 

  5. Grégoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. Computer-Aided Design 39(8), 694–707 (2007)

    Article  Google Scholar 

  6. Schuricht, F., Von der Mosel, H.: Euler-Lagrange equations for nonlinearly elastic rods with self-contact. Archive for Rational Mechanics and Analysis 168(1), 35–82 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Spillmann, J., Teschner, M.: CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63–72. Eurographics Association (2007)

    Google Scholar 

  8. Sobottka, G., Weber, A.: A symbolic-numeric approach to tube modeling in CAD systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 279–283. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Transactions on Graphics (TOG) 27(3), 63:1–63:12 (2008)

    Google Scholar 

  10. Anjyo, K.-I., Usami, Y., Kurihara, T.: A simple method for extracting the natural beauty of hair. ACM SIGGRAPH Computer Graphics 26, 111–120 (1992)

    Article  Google Scholar 

  11. Daviet, G., Bertails-Descoubes, F., Boissieux, L.: A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Transactions on Graphics (TOG) 30, 139:1–139:12 (2011)

    Google Scholar 

  12. Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Transactions on Graphics (TOG) 27, 64:1–64:11 (2008)

    Google Scholar 

  13. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM Journal on Optimization 12(2), 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  14. Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Mathematics of Operations Research 24(3), 529–543 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Silcowitz, M., Niebe, S., Erleben, K.: Nonsmooth Newton method for Fischer function reformulation of contact force problems for interactive rigid body simulation. In: Proceedings of the Sixth Workshop on Virtual Reality Interactions and Physical Simulations, pp. 105–114. Eurographics Association (2009)

    Google Scholar 

  16. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer (2005)

    Google Scholar 

  17. Sobottka, G., Lay, T., Weber, A.: Stable Integration of the Dynamic Cosserat Equations with Application to Hair Modeling. Journal of WSCG 16, 73–80 (2008)

    Google Scholar 

  18. Chung, J., Hulbert, G.M.: A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method. Journal of Applied Mechanics 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC press (1994)

    Google Scholar 

  20. Eberly, D.H.: 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, 2nd edn. Morgan Kaufmann (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wiens, V., Mueller, J.P.T., Weber, A.G., Michels, D.L. (2014). A Physical-Geometric Approach to Model Thin Dynamical Structures in CAD Systems. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8581. Springer, Cham. https://doi.org/10.1007/978-3-319-09150-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09150-1_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09149-5

  • Online ISBN: 978-3-319-09150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics