Skip to main content

Towards Prospective Life Cycle Assessment: How to Identify Key Parameters Inducing Most Uncertainties in the Future? Application to Photovoltaic Systems Installed in Spain

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8581))

Included in the following conference series:

Abstract

Prospective Life Cycle Assessment (LCA) is a relevant approach to assess the environmental performance of future energy pathways. Amongst different types of prospective scenarios, cornerstone scenarios meant for complex systems and long-term approaches, are of interest to assess such performance. They rely on different types of long-term projections, such as projections of technological evolutions and of energy resources. In most studies, scenarios are defined with single values for each parameter, and environmental impacts are assessed in a deterministic way. Inherent uncertainties related to these prospective assumptions are not considered and prospective LCA uncertainties are thus not addressed. In this paper we describe a methodology to account for these uncertainties and to identify the parameters inducing most of the uncertainties in the prospective LCA results. We apply this approach to prospective LCAs of photovoltaic-based electricity generation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beloin-Saint-Pierre, D., Blanc, I.: Environmental impact of pv systems: Effects of energy sources used in production of solar panels. In: Proc. of the 24rd Eur. Photovoltac Solar Energy Conf., Hamburg, Germany, pp. 4517–4520 (September 2009)

    Google Scholar 

  2. Bindoff, N., et al.: Detection and attribution of climate change: from global to regional. Tech. rep, in Climate Change 2013: The Physical Science Basis. Contribution of WG I to the 5th Assessment Report of the IPCC (2013), http://www.climatechange2013.org/images/report/WG1AR5_Chapter10_FINAL.pdf

  3. Cluzel, F., Yannou, B., Millet, D., Leroy, Y.: Exploitation scenarios in industrial system LCA. Int. J. Life Cycle Ass. 19(1), 231–245 (2014)

    Article  Google Scholar 

  4. Collares-Pereira, M., Rabl, A.: The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values. Sol. Energy 22(2), 155–164 (1979)

    Article  Google Scholar 

  5. Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C., Jacob, D., Lenderink, G., Christensen, O.: The spread amongst ensembles regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim. Dynam. 38(5-6), 951–964 (2012)

    Article  Google Scholar 

  6. Dominguez-Ramos, A., Held, M., Aldaco, R., Fischer, M., Irabien, A.: Carbon footprint assessment of photovoltaic modules manufacture scenario. In: Proc. 20th Eur. Symp. Comput. Aided Process Eng. (2010)

    Google Scholar 

  7. Dominguez-Ramos, A., Held, M., Aldaco, R., Fischer, M., Irabien, A.: Prospective co2 emissions from energy supplying systems: photovoltaic systems and conventional grid within spanish frame conditions. Int. J. Life Cycle Ass. 15(6), 557–566 (2010)

    Article  Google Scholar 

  8. Erbs, D., Klein, S., Duffie, J.: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 28(4), 293–302 (1982)

    Article  Google Scholar 

  9. Frischknecht, R., et al.: The ecoinvent database: Overview and methodological framework (7 pp). Int. J. Life Cycle Ass. 10(1), 3–9 (2005)

    Article  Google Scholar 

  10. Fthenakis, V., Frischknecht, R., Raugei, M., Kim, H.C., Alsema, E., Held, M., de Wild-Scholten, M.: Methodology guidelines on life cycle assessment of photovoltaic electricity. Tech. rep., IEA-PVPS Task 12 (2011)

    Google Scholar 

  11. Garabedian, R.: First solar technology update. Tech. rep., First solar Inc (2013)

    Google Scholar 

  12. Heijungs, R., Huijbregts, M.: A review of approaches to treat uncertainty in lca. Elsevier, Orlando (2004)

    Google Scholar 

  13. Heijungs, R., Frischknecht, R.: Representing statistical distributions for uncertain parameters in lca. relationships between mathematical forms, their representation in ecospold, and their representation in cmlca (7 pp). Int. J. Life Cycle Ass. 10(4), 248–254 (2005)

    Article  Google Scholar 

  14. Houari, Y., Speirs, J., Candelise, C., Gross, R.: A system dynamics model of tellurium availability for cdte pv. Prog. in Photovoltaics 22(1), 129–146 (2014)

    Article  Google Scholar 

  15. IEA: Technology roadmap: solar photovoltaic energy. Tech. rep., International Energy Agency (2010), http://www.iea.org/publications

  16. IEA: World energy outlook. Tech. rep. (2011), http://www.iea.org/publications/freepublications/publication/name,37085,en.html

  17. IEA: co 2 emissions from fuel combustion, highlights. Tech. rep. (2013), http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2013.pdf

  18. IEA: Key world energy statistics 2013. Tech. rep. (2013), http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf

  19. IPCC: Climate change 2007. ipcc fourth assessment report. the physical science basis. Tech. rep. (2007), http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  20. Itten, R., Wyss, F., Frischknecht, R.: Lci of the global crystalline photovoltaics supply chain and of future photovoltaics electricity production. Tech. rep., Treeze Ltd, Uster, Switzerland (2014)

    Google Scholar 

  21. Jacob, D.: A note to the simulation of the annual and inter-annual variability of the water budget over the baltic sea drainage basin. Meteorol. Atmos. Phys. 77(1-4), 61–73 (2001)

    Article  Google Scholar 

  22. Jones, C.G., Willén, U., Ullerstig, A., Hansson, U.: The rossby centre regional atmospheric climate model part i: model climatology and performance for the present climate over europe. AMBIO 33(4), 199–210 (2004)

    Google Scholar 

  23. Jungbluth, N., Stucki, M., Flury, K., Frischknecht, R., Büsser, S.: Life cycle inventories of photovoltaics. ESU-services Ltd., Uster, CH (2012)

    Google Scholar 

  24. Kjellström, E., Bärring, L., Gollvik, S., Hansson, U., Jones, C.: A 140-year simulation of european climate with the new version of the rossby centre regional atmospheric climate model (rca3). SMHI Reports Meteorology and Climatology 108 (2005)

    Google Scholar 

  25. Liu, B.Y., Jordan, R.C.: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4(3), 1–19 (1960)

    Article  Google Scholar 

  26. Marwede, M., Reller, A.: Future recycling flows of tellurium from cadmium telluride photovoltaic waste. Resources, Conservation and Recycling 69, 35–49 (2012)

    Article  Google Scholar 

  27. Ménard, L., et al.: Benefit of geoss interoperability in assessment of environmental impacts illustrated by the case of photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(6), 1722–1728 (2012)

    Article  Google Scholar 

  28. Muneer, T.: Solar radiation model for europe. Build. Serv. Eng. Res. T. 11(4), 153–163 (1990)

    Article  Google Scholar 

  29. Nugent, D., Sovacool, B.: Assessing the lifecycle greenhouse gas emissions from solar pv and wind energy: A critical meta-survey. Energ. Policy 65, 229–244 (2014)

    Article  Google Scholar 

  30. Padey, P., Girard, R., le Boulch, D., Blanc, I.: From lcas to simplified models: A generic methodology applied to wind power electricity. Environ. Sci. Technol. 47(3), 1231–1238 (2013)

    Google Scholar 

  31. Pesonen, H.L., et al.: Framework for scenario development in lca. Int. J. Life Cycle Ass. 5(1), 21–30 (2000)

    Article  Google Scholar 

  32. Raugei, M., Frankl, P.: Life cycle impacts and costs of photovoltaic systems: current state of the art and future outlooks. Energy 34(3), 392–399 (2009)

    Article  Google Scholar 

  33. Remund, J., Müller, S.C.: Trends in global radiation between 1950 and 2100. In: 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, held September, pp. 13–17 (2010)

    Google Scholar 

  34. Rienecker, M.M., et al.: Merra: Nasa’s modernera retrospective analysis for research and applications. J. Climate 24(14) (2011)

    Google Scholar 

  35. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 145(2), 280–297 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Scharmer, K., Greif, J.: The European solar radiation atlas, vol. 2. Presses des MINES (2000)

    Google Scholar 

  37. Sobol’, I.: Sensitivity Estimates for Nonlinear Models. Mathematical Modeling and Computational Experiment 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Stainforth, D.A., et al.: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024), 403–406 (2005)

    Article  Google Scholar 

  39. Van Meijgaard, E., Van Ulft, L., Van de Berg, W., Bosveld, F., Van den Hurk, B., Lenderink, G., Siebesma, A.: The knmi regional atmospheric climate model racmo version 2.1. Tech. rep (2008)

    Google Scholar 

  40. Weidema, B.P., Wesnæs, M.S.: Data quality management for life cycle inventories an example of using data quality indicators. Journal of Cleaner Production 4(3), 167–174 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marini, C., Blanc, I. (2014). Towards Prospective Life Cycle Assessment: How to Identify Key Parameters Inducing Most Uncertainties in the Future? Application to Photovoltaic Systems Installed in Spain. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8581. Springer, Cham. https://doi.org/10.1007/978-3-319-09150-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09150-1_51

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09149-5

  • Online ISBN: 978-3-319-09150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics