Advertisement

An Orthogonal Set of Weighted Quaternionic Zernike Spherical Functions

  • Isabel Cação
  • João Morais
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)

Abstract

In this work, we give a brief description of the theory and properties of the three-dimensional quaternionic Zernike spherical polynomials (QZSPs). A refinement of the QZSPs to functions vanishing over the unit sphere leads to the computation of the weighted quaternionic Zernike spherical functions (WQZSFs). In particular, the underlying functions are of three real variables and take on values in the quaternions (identified with ℝ4). Also, in this work, we prove that the WQZSFs are orthonormal in the unit ball with respect to a suitable weight function. The representation of these functions are given explicitly, and a summary of their fundamental properties is also discussed. To the best of our knowledge, this does not appear to have been done in literature before.

Keywords

Quaternionic analysis spherical monogenics weighted radial polynomials Zernike polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, R.M., Janssen, A.J.E.M.: On-axis and far field sound radiation from resilient flat and dome-shaped radiators. J. Acoust. Soc. Am. 125, 1444–1455 (2009)CrossRefGoogle Scholar
  2. 2.
    Aarts, R.M., Janssen, A.J.E.M.: Sound radiation quantities arising from a resilient circular radiator. J. Acoust. Soc. Am. 126, 1776–1787 (2009)CrossRefGoogle Scholar
  3. 3.
    Aarts, R.M., Janssen, A.J.E.M.: Sound radiation from a resilient cap on a rigid sphere. J. Acoust. Soc. Am. 127, 2262–2273 (2010)CrossRefGoogle Scholar
  4. 4.
    Aarts, R.M., Janssen, A.J.E.M.: Spatial impulse responses from a flexible baffled circular piston. J. Acoust. Soc. Am. 129, 2952–2959 (2011)CrossRefGoogle Scholar
  5. 5.
    Bará, S., Arines, J., Ares, J., Prado, P.: Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils. J. Opt. Soc. Am. 23, 2061–2066 (2006)CrossRefGoogle Scholar
  6. 6.
    Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Phil. Soc. 50, 40–48 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Mathematical Methods in the Applied Sciences 33, 394–411 (2009)Google Scholar
  8. 8.
    Born, M., Wolf, E.: Principles of Optics, ch. 9. Cambridge University Press, Cambridge (1999)Google Scholar
  9. 9.
    Braat, J.J.M., Haver, S., van, J.A.J.E.M., Dirksen, P.: Assessment of optical systems by means of point-spread functions. In: Wolf, E. (ed.) Progress in Optics, vol. 51, pp. 349–468. Elsevier, Amsterdam (2008)Google Scholar
  10. 10.
    Cação, I.: Constructive Approximation by Monogenic polynomials. Ph.D. thesis, Universidade de Aveiro (2004)Google Scholar
  11. 11.
    Cação, I., Gürlebeck, K., Bock, S.: Complete Orthonormal Systems of Spherical Monogenics - A Constructive Approach. In: Son, L.H., et al. (eds.) Methods of Complex and Clifford Analysis, pp. 241–260. SAS International Publications, Delhi (2005)Google Scholar
  12. 12.
    Cação, I.: Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu systems in ℝ3. Numerical Algorithms 55, 191–203 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cação, I., Morais, J.: An introduction to the quaternionic Zernike spherical polynomials. In: AIP Conf. Proc., vol. 1558, pp. 502–505 (2013)Google Scholar
  14. 14.
    Canterakis, N.: 3D Zernike moments and zernike affine invariants for 3D image analysis and recognition. In: 11th Scandinavian Conf. on Image Analysis (1999)Google Scholar
  15. 15.
    Dai, G.-M.: Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula. J. Opt. Soc. Am. A23, 539–543 (2006)Google Scholar
  16. 16.
    Janssen, A.J.E.M.: A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory. ArXiv:1110.2369 (2011)Google Scholar
  17. 17.
    Kim, C.-J., Shannon, R.R.: Catalog of Zernike polynomials. In: Shannon, R.R., Wyant, J.C. (eds.) Applied Optics and Optical Engineering, vol. 10, pp. 193–221. Academic Press, New York (1987)Google Scholar
  18. 18.
    Lávicka, R.: Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3. Arch. Math (Brno) 46, 339–349 (2010)MathSciNetGoogle Scholar
  19. 19.
    Mahajan, V.N.: Zernike annular polynomials and optical aberrations of systems with annular pupils. Appl. Opt. 33, 8125–8127 (1994)CrossRefGoogle Scholar
  20. 20.
    Mathar, R.J.: Zernike basis to cartesian transformations. Serbian Astronomical Journal 179, 107–120 (2009)CrossRefGoogle Scholar
  21. 21.
    Morais, J.: Approximation by homogeneous polynomial solutions of the Riesz system in ℝ3. Ph.D. thesis, Bauhaus-Universität Weimar (2009)Google Scholar
  22. 22.
    Morais, J., Gürlebeck, K.: Real-Part Estimates for Solutions of the Riesz System in ℝ3. Complex Variables and Elliptic Equations 57, 505–522 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Morais, J., Cação, I.: Quaternion Zernike spherical polynomials. In print by Mathematics of ComputationGoogle Scholar
  24. 24.
    Nijboer, B.R.A.: The diffraction theory of aberrations. Ph.D. dissertation, University of Groningen, Groningen, Netherlands (1942)Google Scholar
  25. 25.
    Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–211 (1976)CrossRefGoogle Scholar
  26. 26.
    Tango, W.J.: The circle polynomials of Zernike and their application in optics. Appl. Phys. 13, 327–332 (1977)CrossRefGoogle Scholar
  27. 27.
    Zernike, F.: Diffraction theory of the knife-edge test and its improved version, the phase-contrast method. Physica (Amsterdam) 1, 689–704 (1934)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zernike, F., Brinkman, H.C.: Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. Proc. Royal Acad. Amsterdam 38, 161–170 (1935)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Isabel Cação
    • 1
  • João Morais
    • 2
  1. 1.Department of Mathematics, Center for Research and Development in Mathematics and ApplicationsUniversity of AveiroAveiroPortugal
  2. 2.Center for Research and Development in Mathematics and ApplicationsUniversity of AveiroAveiroPortugal

Personalised recommendations