Skip to main content

An Additive Decomposition of Harmonic Functions in \(\rm{I\!R}^{3}\)

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

  • 1723 Accesses

Abstract

Additive decompositions of harmonic functions play an important role in function theory, and in its application to the solution of partial differential equations. One of the most fundamental results is the decomposition of a harmonic function into a sum of a holomorphic and an anti-holomorphic function. This decomposition can be generalized to the case of quaternion valued harmonic function, where the summands are then monogenic and anti-monogenic, respectively. For paravector-valued functions, sometimes called \(\mathcal{A}\)-valued functions, this decomposition is not possible. In previous articles it was shown that a harmonic function can be represented by a linear combination of monogenic, anti-monogenic and ψ-hyperholomorphic functions, where ψ = {1,e 2, − e 1} is the structural set. In this paper we will study the question of such a representation for a general structural set ψ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu Blaya, R., Bory Reyes, J., Guzman Adan, A., Kaehler, U.: On some structural sets and a quaternionic (φ, ψ)-hyperholomorphic function theory. Submitted to Mathematische Nachrichten

    Google Scholar 

  2. Álvarez-Peña, C., Michael Porter, R.: Contragenic Functions of Three Variables. Complex Anal. Oper. Theory 8, 409–427 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bock, S.: On a three-dimensional analogue to the holomorphic z-powers: power series and recurrence formulae. Complex Variables and Elliptic Equations: An International Journal 57, 1349–1370 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publishing, Boston (1982)

    MATH  Google Scholar 

  5. Gürlebeck, K.: On some classes of Pi-operators. In: Ryan, J., Struppa, D. (eds.) Dirac Operators in Analysis. Pitman Research Notes in Mathematics, vol. 394 (1998)

    Google Scholar 

  6. Gürlebeck, K., Malonek, H.: A hypercomplex derivative of monogenic functions in \(\rm{I\!R}^{n+1}\) and its applications. Complex Variables 39(3), 199–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gürlebeck, K., Nguyen, H.M.: On ψ-hyperholomorphic functions in \(\rm{I\!R}^{3}\). In: AIP Conference Proceedings, vol. 1558, p. 496 (2013), doi:10.1063/1.4825536.

    Google Scholar 

  8. Gürlebeck, K., Nguyen, H.M.: On ψ-hyperholomorphic functions and a decomposition of harmonics. Submitted to the volume “Hypercomplex Analysis: New perspectives and applications”. Trends in Mathematics. Birkhäuser, Basel

    Google Scholar 

  9. Kraußhar, R.S., Malonek, H.R.: A characterization of conformal mappings in \(\rm{I\!R}^{4}\) by a formal differentiability condition. Bull. Soc. R. Sci. Liège 70(1), 35–49 (2001)

    MATH  Google Scholar 

  10. Delanghe, R., Kraußhar, R.S., Malonek, H.R.: Differentiability of functions with values in some real associative algebras: approaches to an old problem. Bull. Soc. R. Sci. Liège 70(4-6), 231–249 (2001)

    MATH  Google Scholar 

  11. Luna Elizarrarás, M.E., Shapiro, M.: A survey on the (hyper)derivates in complex, quaternionic and Clifford analysis. Millan J. of Math. 79, 521–542 (2011)

    Article  MATH  Google Scholar 

  12. Malonek, H.R.: Contributions to a geometric function theory in higher dimensions by Clifford analysis method: Monogenic functions and M-conformal mappings. In: Brackx, F., et al. (eds.) Clifford Analysis and its Applications. Proceedings of the NATO Advanced Research Workshop, Prague, Czech Republic, October 30-November 3. NATO Sci. Ser. II, Math. Phys. Chem., vol. 25, pp. 213–222. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  13. Morais, J., Gürlebeck, K.: Real-Part Estimates for Solutions of the Riesz System in \(\rm{I\!R}^{3}\). Complex Var. Elliptic Equ. 57, 505–522 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Morais, J., Gürlebeck, K.: Bloch’s Theorem in the Context of Quaternion Analysis. Computational Methods and Function Theory 12(2), 541–558 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vasilevskij, N.L., Shapiro, M.V.: On Bergmann kernel functions in quaternion analysis. Russ. Math. 42(2), 81–85 (1998); Translation from Izv. Vyssh. Uchebn. Zaved., Mat. (2), 84–88 (1998)

    Google Scholar 

  16. Shapiro, M.V., Vasilevski, N.L.: Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Complex Variables 27, 17–46 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stern, I.: Randwertaufgaben für verallgemeinerte Cauchy–Riemann-Systeme im Raum. Dissertation A, Martin-Luther-Universität Halle-Wittenberg (1989)

    Google Scholar 

  18. Stern, I.: Boundary value problems for generalized Cauchy–Riemann systems in the space. In: Kühnau, R., Tutschke, W. (eds.) Boundary Value and Initial Value Problems in Complex Analysis. Pitman Res. Notes Math., vol. 256, pp. 159–183 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gürlebeck, K., Nguyen, H.M., Legatiuk, D. (2014). An Additive Decomposition of Harmonic Functions in \(\rm{I\!R}^{3}\) . In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics