Advertisement

On Numerical Aspects of Pseudo-Complex Powers in ℝ3

  • Carla Cruz
  • M. Irene Falcão
  • Helmuth R. Malonek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8579)

Abstract

In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical efficiency of the use of PCP. In this context a modification of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.

Keywords

Pseudo-complex powers monogenic polynomails Vandermonde matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez-Peña, C., Porter, M.: Appell bases for monogenic functions of three variables. Adv. in Appl. Clifford Algebras 23, 547–560 (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Björck, A., Pereyra, V.: Solution of Vandermonde systems of equations. Mathematics of Computation 24, 893–903 (1970)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33(4), 394–411 (2010)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman, Boston (1982)zbMATHGoogle Scholar
  5. 5.
    Cação, I., Gürlebeck, K., Malonek, H.: Special monogenic polynomials and L 2-approximation. Adv. Appl. Clifford Algebras 11(S2), 47–60 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cação, I., Malonek, H.: On complete sets of hypercomplex Appell polynomials. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1048, pp. 647–650 (2008)Google Scholar
  7. 7.
    Cruz, C., Falcão, M.I., Malonek, H.R.: On pseudo-complex bases for monogenic polynomials. In: Sivasundaram, S. (ed.) AIP Conference Proceedings, vol. 1493, pp. 350–355 (2012)Google Scholar
  8. 8.
    Cruz, C., Falcão, M.I., Malonek, H.R.: On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1479, pp. 283–286 (2012)Google Scholar
  9. 9.
    Cruz, C., Falcão, M.I., Malonek, H.R.: Monogenic pseudo-complex power functions and their applications. Mathematical Methods in the Applied Sciences (2013), doi:10.1002/mma.2931Google Scholar
  10. 10.
    Delanghe, R., Lávička, R., Souček, V.: The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces. Math. Methods Appl. Sci. 7(35), 745–757 (2012)CrossRefGoogle Scholar
  11. 11.
    Eisinberg, A., Fedele, G.: On the inversion of the Vandermonde matrix. Applied Mathematics and Computation 174, 1384–1397 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Falcão, M.I., Miranda, F.: Quaternions: A mathematica package for quaternionic analysis. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 200–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Falcão, M.I., Cruz, J., Malonek, H.: Remarks on the generation of monogenic functions. In: 17th Inter. Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar (2006)Google Scholar
  14. 14.
    Falcão, M.I., Malonek, H.: Generalized exponentials through Appell sets in ℝn + 1 and Bessel functions. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 936, pp. 738–741 (2007)Google Scholar
  15. 15.
    Gürlebeck, K., Malonek, H.: A hypercomplex derivative of monogenic functions in ℝn + 1 and its applications. Complex Variables Theory Appl. 39, 199–228 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic functions in the plane and n-dimensional space. Birkhäuser Verlag, Basel (2008)Google Scholar
  17. 17.
    Knuth, D.E.: The art of computer programming, vol. 1. Addison Wesley, Reading (1968)zbMATHGoogle Scholar
  18. 18.
    Lávička, R.: Canonical bases for sl(2,c)-modules of spherical monogenics in dimension 3. Archivum Mathematicum Tomus 46, 339–349 (2010)Google Scholar
  19. 19.
    Malonek, H.: Power series representation for monogenic functions in ℝn + 1 based on a permutational product. Complex Variables, Theory Appl. 15, 181–191 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Malonek, H.: Selected topics in hypercomplex function theory. In: Eriksson, S.L. (ed.) Clifford Algebras and Potential Theory, 7, University of Joensuu, pp. 111–150 (2004)Google Scholar
  21. 21.
    Malonek, H.R., Falcão, M.I.: On paravector valued homogeneous monogenic polynomials with binomial expansion. Advances in Applied Clifford Algebras 22(3, SI), 789–801 (2012)Google Scholar
  22. 22.
    Parker, F.D.: Mathematical Notes: Inverses of Vandermonde matrices. Amer. Math. Monthly 71(4), 410–411 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Traub, J.F.: Associated polynomials and uniform methods for the solution of linear problems. SIAM Rev. 8, 277–301 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Wagner, D.B.: Dynamic programming. The Mathematica J. 5, 42–51 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carla Cruz
    • 1
  • M. Irene Falcão
    • 2
  • Helmuth R. Malonek
    • 1
    • 3
  1. 1.Centro de Investigação e Desenvolvimento em Matemática e AplicaçõesUniversidade de AveiroPortugal
  2. 2.Departamento de Matemática e Aplicações and Centro de MatemáticaUniversidade do MinhoPortugal
  3. 3.Departamento de MatemáticaUniversidade de AveiroPortugal

Personalised recommendations