Skip to main content

Gravity Field of the Earth

  • Chapter
  • First Online:
Quantitative Plate Tectonics
  • 2372 Accesses

Abstract

This conclusive chapter introduces the Earth’s gravity field and the concept of geopotential. The approach follows the potential field techniques presented in Chap. 4. The concepts of geoid and ellipsoid are discussed, along with the methods for processing gravity data. The chapter concludes with the important topic of dynamic topography, which links the geoid to mantle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biancale R, Balmino G, Lemoine JM, Marty JC, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, König R, Massmann FH, Raimondo J-C, Schmid R, Yuan Zhu S (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5‐S1. Geophys Res Lett 27(22):3611–3614

    Article  Google Scholar 

  • Conder JA, Wiens DA (2007) Rapid mantle flow beneath the Tonga volcanic arc. Earth Planet Sci Lett 264(1):299–307

    Article  Google Scholar 

  • Dziewonski AM, Hager BH, O’Connell RJ (1977) Large-scale heterogeneities in the lower mantle. J Geophys Res 82(2):239–255

    Article  Google Scholar 

  • Hager BH (1984) Subducted slabs and the geoid: constraints on mantle rheology and flow. J Geophys Res 89(B7):6003–6015. doi:10.1029/JB089iB07p06003

    Article  Google Scholar 

  • Hager BH, Richards MA (1989) Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Phil Trans Roy Soc Lond Series A 328(1599):309–327

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1993) Physical geodesy. Institute of Physical Geodesy, Technical University, Graz, Corrected reprint, 364 pp

    Google Scholar 

  • Lerch FJ, Nerem RS, Putney BH, Felsentreger TL, Sanchez BV, Marshall JA, Klosko SM, Patel GB, Williamson RG, Chinn DS, Chan JC, Rachlin KE, Chandler NL, McCarthy JJ, Luthcke SB, Pavlis NK, Pavlis DE, Robbins JW, Kapoor S (1994) A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM‐T3. J Geophys Res 99(B2):2815–2839. doi:10.1029/93JB02759

    Article  Google Scholar 

  • Moucha R, Forte AM (2011) Changes in African topography driven by mantle convection. Nat Geosci 4(10):707–712

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Google Scholar 

  • Pekeris CL (1935) Thermal convection in the interior of the Earth. Mon Not Roy Astron Soc Geophys 3:343–367

    Article  Google Scholar 

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71(5):282–289

    Article  Google Scholar 

  • Richards MA, Hager BH (1984) Geoid anomalies in a dynamic earth. J Geophys Res 89(B7):5987–6002. doi:10.1029/JB089iB07p05987

    Article  Google Scholar 

  • Schubert G, Turcotte DL (1972) One-dimensional model of shallow-mantle convection. J Geophys Res 77(5):945–951. doi:10.1029/JB077i005p00945

    Article  Google Scholar 

  • Schubert G, Yuen DA, Froidevaux C, Fleitout L, Souriau M (1978) Mantle circulation with partial shallow return flow: effects on stresses in oceanic plates and topography of the sea floor. J Geophys Res 83(B2):745–758. doi:10.1029/JB083iB02p00745

    Article  Google Scholar 

  • Schwintzer P, Reigber C, Bode A, Kang Z, Zhu SY, Massmann F-H, Raimondo JC, Biancale R, Balmino G, Lemoine JM, Moynot B, Marty JC, Barlier F, Boudon Y (1997) Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4. J Geod 71(4):189–208

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02–an improved Earth gravity field model from GRACE. J Geod 79(8):467–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schettino, A. (2015). Gravity Field of the Earth. In: Quantitative Plate Tectonics. Springer, Cham. https://doi.org/10.1007/978-3-319-09135-8_14

Download citation

Publish with us

Policies and ethics