Skip to main content

Nitrogen-Fixing Plant-Microbe Symbioses

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 15))

Abstract

The symbiotic conversion of atmospheric nitrogen into nitrogenous compounds assimilated by higher organisms is an essential part of the global N cycle and a supporting pillar of agricultural practices. The nitrogen fixing symbiosis is not confined only to leguminous plants but also found some other plant families. The symbiotic relationship between plants and rhizobia is initiated by the release of flavonoids into the rhizosphere by the plant root. The release of flavonoids are sensed by the rhizobial transcriptional regulator NodD, which leads to symbioses-specific responses such as the release of Nod factors. The enzymes involved in the synthesis of basic Nod factor structure are encoded by the nodABC genes, conserved in almost all types of rhizobia. The perception of Nod factor by the plant is mediated by a receptor-like kinase, which induces intracellular calcium oscillations and leads to the deformation of root hairs through the restructuring of the cytoskeleton, leading to the formation of an infection thread. Although rhizobia are capable of synthesizing their own amino acids in the free living stage, within the infection thread rhizobia are dependent on the plant host for amino acids and other compounds.

Rhizobia were initially classified on the basis of their morphological, physiological characteristics and dominantly on host plant that they nodulate but after the invention of molecular techniques their molecular characteristics were taken into consideration. Thus, rhizobial taxonomy was repeatedly revised and refined. Currently, about 145 species of rhizobia have described from the genera Azorhizobium, Allorhizobium, Agrobacterium, Bradyrhizobium, Ensifer and Rhizobium and the taxonomic status of some genera and species has been revised. Root nodulating beta-rhizobia from different legumes have only been described recently, but the molecular evidence showed that they are existed as legume symbionts for 50 million years. Different species of beta-rhizobia contain common nodulation genes like nodABC, nodD, nifH, and these genes are very similar to the symbiotic genes of traditional rhizobia.

Phylogenetic analyses are the basis to understanding the evolutionary history of individual genes or entire genomes of microorganisms. Initially, the bacterial phylogenies were reconstructed on the basis of morphological and physiological characteristics of the cell. Later, sequence analysis and chemical content analysis were introduced to further improve phylogenies. Sequencing of 16S rRNA genes not only contribute significantly to the elimination of plasmid-borne characteristics from rhizobial taxonomy, but also helped in the identification of beta and gamma rhizobia. Nowadays, the sequencing of housekeeping genes, DNA profiling and the application of DNA arrays have become standard methods in bacterial taxonomy.

The legume-rhizobia association contributes significantly to the symbiotic biological nitrogen-fixing process, but other microbes such as cyanobacteria, endophytic bacteria, or Frankia sp. also form nitrogen-fixing associations of various degrees of intimacy with plants. Of course, the main benefit of legume cultivation comes from their ability to fix nitrogen in symbiosis with rhizobia but others are also beneficial for plants growth and survival in different environments. Aside from its biological benefit, biological nitrogen fixation is also critical for agriculture due to its impact on farming cost, sustainable land use, soil quality, and mitigation of greenhouse gas emissions. The present review covers the mechanism of legume-rhizobium symbiosis, rhizobial taxonomy, and non-rhizobial symbiotic nitrogen fixation processes by cyanobacteria, endophytic diazotrophs and Frankia sp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and fpoB gene sequencing. Int J Syst Evol Microbiol 54:2095–2105. doi:10.1099/ijs.0.63094-0

    PubMed  CAS  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417. doi:10.1016/j.cropro.2007.07.009

    Google Scholar 

  • Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil. Turk J Biol 34:1–7. doi:10.3906/biy-0809-12

    Google Scholar 

  • Albayrak S, Sevimay CS, Tongel O (2006) Effect of inoculation of Rhizobium on seed yield and yield components of common vetch (Vicia sativa L.). Turk J Agric For 30:31–37

    Google Scholar 

  • Alunni B, Kevei Z, Redondo-Nieto M, Kondorosi A, Mergaert P, Kondorosi E (2007) Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact 20:1138–1148. doi:10.1094/MPMI-20-9-1138

    PubMed  CAS  Google Scholar 

  • An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448. doi:10.1099/ijs.0.63942-0

    PubMed  CAS  Google Scholar 

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–478. doi:10.1146/annurev.pp.35.060184.002303

    CAS  Google Scholar 

  • Atkinson EM, Long SR (1992) Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Mol Plant Microbe Interact 5:439–442

    PubMed  CAS  Google Scholar 

  • Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci U S A 91:8418–8422

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ausmees N, Jonsson H, Hoglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:1253–1262

    PubMed  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Evol Microbiol 36:86–93. doi:10.1099/00207713-36-1-86

    CAS  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90:6091–6094

    PubMed  CAS  PubMed Central  Google Scholar 

  • Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 3:138–166. doi:10.3390/genes3010138

    PubMed  PubMed Central  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, de Olivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209. doi:10.1007/BF00032247

    CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–62

    CAS  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR (2005) Classification of prokaryotic organism and concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 27–32

    Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180. doi:10.1007/BF00032245

    CAS  Google Scholar 

  • Brown JR, Doolittle WF (1995) Root of the universal tree of life based on ancient aminoacyl-tRNA synthesize gene duplications. Proc Natl Acad Sci U S A 92:2441–2445. doi:10.1073/pnas.92.7.2441

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calvert HE, Lalonde M, Bhuvaneswari TV, Bauer WD (1978) Role of lectins in plant-microorganism interactions. IV. Ultrastructural localization of soybean lectin binding sites of Rhizobium japonicum. Can J Microbiol 24:785–793

    PubMed  CAS  Google Scholar 

  • Cheminingwa GN (2002) The abundance, efficacy, and diversity of Rhizobium leguminosarum bv. viciae populations in southern Manitoba soils. Ph.D. thesis, University of Manitoba, Winnipeg, Canada

    Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Evol Microbiol 38:392–397. doi:10.1099/00207713-38-4-392

    Google Scholar 

  • Chun J, Hong SG (2010) Methods and programs for calculation of phylogenetic relationships from molecular sequences. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 23–39. ISBN 978-1-904455-67-7

    Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30. doi:10.1016/S1360-1385(00)01810-0

    PubMed  CAS  Google Scholar 

  • da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182. doi:10.1016/j.syapm.2011.10.005

    PubMed  Google Scholar 

  • de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Evol Microbiol 44:715–733. doi:10.1099/00207713-44-4-715

    Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290. doi:10.1099/00207713-48-4-1277

    PubMed  Google Scholar 

  • de Velde WV, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126. doi:10.1126/science.1184057

    PubMed  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288. doi:10.1016/j.soilbio.2004.04.009

    CAS  Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed  CAS  PubMed Central  Google Scholar 

  • Downie JA (2005) Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Curr Biol 15:R196–R198. doi:10.1016/j.cub.2005.03.007

    PubMed  CAS  Google Scholar 

  • Downie JA, Knight CA, Johnston AWB, Rossen L (1985) Identification of genes and gene products involved in the nodulation of peas by Rhizobium leguminosarum. Mol Gen Genet 198:255–262. doi:10.1007/BF00383003

    CAS  Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: an evolving view of plants and symbiotic bacteria. Trends Plant Sci 3:473–478. doi:10.1016/S1360-1385(98)01340-5

    Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the Iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910. doi:10.1104/pp.102.018150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Evol Microbiol 38:89–98. doi:10.1099/00207713-38-1-89

    CAS  Google Scholar 

  • Esseling JJ, Lhuissier FGP, Emons AMC (2003) Nod factor-induced root hair curling: continuous polar growth towards the point of nod factor application. Plant Physiol 132:1982–1988. doi:10.1104/pp.103.021634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Falk EC, Johnson JL, Baldani VLD, Dobereiner J, Krieg NR (1986) Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and conglomeromonas. Int J Syst Evol Microbiol 36:80–85. doi:10.1099/00207713-36-1-80

    CAS  Google Scholar 

  • Fellay R, Perret X, Viprey V, Broughton WJ, Brenner S (1995) Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 16:657–667. doi:10.1111/j.1365-2958.1995.tb02428.x

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Ferguson GP, Jansen A, Marlow VL, Walker GC (2006) BacA-mediated bleomycin sensitivity in Sinorhizobium meliloti is independent of the unusual lipid A modification. J Bacteriol 188:3143–3148. doi:10.1128/JB.188.8.3143-3148.2006

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finnie C, Hartley NM, Findlay KC, Downie JA (1997) The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol Microbiol 25:135–146. doi:10.1046/j.1365-2958.1997.4471803.x

    PubMed  CAS  Google Scholar 

  • Finnie C, Zorreguieta A, Hartley NM, Downie JA (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J Bacteriol 180:1691–1699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frank B (1889) Uber die pilzsymbiose der leguminosen. Berichte Deutschen Botanischen Gesellschaft 7:332–346

    Google Scholar 

  • Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol 184:7042–7046. doi:10.1128/JB.184.24.7042-7046.2002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932. doi:10.1073/pnas.0710618105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glazebrook J, Ichige A, Walker GC (1993) A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497. doi:10.1101/gad.7.8.1485

    PubMed  CAS  Google Scholar 

  • Glazunova OO, Raoult D, Roux V (2009) Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 59:2317–2322. doi:10.1099/ijs.0.005488-0

    PubMed  CAS  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bardley RS, Cooper JE, De Lay DJ, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Evol Microbiol 41:582–587. doi:10.1099/00207713-41-4-582

    Google Scholar 

  • Graur D, Li WH (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288. doi:10.1094/MPMI-06-11-0172

    PubMed  CAS  Google Scholar 

  • Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Longhi R, Boncompagni E, Herouart D, Dall’Angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP (2011) Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 9:e1001169. doi:10.1371/journal.pbio.1001169

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hakoyama T, Niimi K, Watanabe H, Tabata R, Matsubara J, Sato S, Nakamura Y, Tabata S, Jichun L, Matsumoto T, Tatsumi K, Nomura M, Tajima S, Ishizaka M, Yano K, Imaizumi-Anraku H, Kawaguchi M, Kouchi H, Suganuma N (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462:514–517. doi:10.1038/nature08594

    PubMed  CAS  Google Scholar 

  • Haukka K, Lindstrom K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolated from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, Kammen AV, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herridge DF, Holland JF, Rose LA, Redden RJ (1998) Selection and breeding of grain legumes in Australia for enhanced nodulation and N2 fixation. In: Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia. Soil and Water Management and Crop Nutrition Section Joint FAO/IAEA Division International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    CAS  Google Scholar 

  • Ho SC, Wang JL, Schindler M, Loh JT (1994) Carbohydrate binding activities of Bradyrhizobium japonicum. III. Lectin expression, bacterial binding, and nodulation efficiency. Plant J 5:873–884. doi:10.1046/j.1365-313X.1994.5060873.x

    PubMed  CAS  Google Scholar 

  • Hobson KB, Armstrong RD, Nicolas M, Connor D, Marterne MA (2004) Boron tolerance of lentil-highlights of a research program. In: Fischer RA (ed) New directions for a diverse planet. Proceedings of the 4th international crop science congress, Brisbane, Australia, 26th September–1st October 2004. http://www.regional.org.au/au/asa/2004/symposia/6/2/1028_hobsonkb.htm. Assessed on 24 Nov 2013

  • Holmes B, Popoff M, Kiredjian M, Kersters K (1988) Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38:406–416

    Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–331. doi:10.1038/nature07028

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178. doi:10.1016/j.jbiotec.2003.07.010

    PubMed  CAS  Google Scholar 

  • Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242. doi:10.1094/MPMI.2002.15.3.233

    PubMed  CAS  Google Scholar 

  • Hussner A (2010) Nobanis–Invasive alien species fact sheet–Azolla filiculoides. www.nobanis.org. Assessed on 24 Nov 2013

  • IAEA (1998) Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia, International Atomic Energy Agency, (IAEA-TECDOC-1027), Vienna, Austria

    Google Scholar 

  • Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Google Scholar 

  • John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci U S A 90:625–629. doi:10.1073/pnas.90.2.625

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci U S A 105:704–709. doi:10.1073/pnas.0709338105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 234–242

    Google Scholar 

  • Jordan DC, Allen ON (1974) GenusII, Rhizobium. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 262–264

    Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273. doi:10.1099/ijs.0.02902-0

    PubMed  CAS  Google Scholar 

  • Kabir MH, Chowdhury AKM, Rashid MH, Malaker JC, Hassan SMM (2008) Effect of rhizobial inoculation on nodulation and growth of summer mungbean. Bangladesh J Environ Sci 14:129–133

    Google Scholar 

  • Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJ, Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 179:2103–2108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406. doi:10.1099/ijs.0.02348-0

    PubMed  CAS  Google Scholar 

  • Karunakaran R, Haag AF, East AK, Ramachandran VK, Prell J, James EK, Scocchi M, Ferguson GP, Poole PS (2010) BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes. J Bacteriol 192:2920–2928. doi:10.1128/JB.00020-10

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kereszt A, Mergaert P, Kondorosi E (2011) Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims. Mol Plant Microbe Interact 24:1300–1309. doi:10.1094/MPMI-06-11-0152

    PubMed  CAS  Google Scholar 

  • Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, Elhai J, Chiu WL (2010) Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol 154:1381–1389. doi:10.1104/pp. 110.162529

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kluyver AJ, van Neil CB (1936) Prospects for natural system of classification of bacteria. Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten. II. 94:396–403

    Google Scholar 

  • Kneip C, Lockhart P, Voß C, Maier UG (2007) Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evol Biol 7:55. doi:10.1186/1471-2148-7-55

    PubMed  PubMed Central  Google Scholar 

  • Knosel DH (1984) Genus: Phyllobacterium. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 254–256

    Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293. doi:10.1128/AEM.01398-06

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod. Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397. doi:10.1093/pcp/pcq107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krehenbrink M, Downie JA (2008) Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics 9:55

    PubMed  PubMed Central  Google Scholar 

  • Krehenbrink M, Edwards A, Downie JA (2011) The superoxide dismutase SodA is targeted to the periplasm in a SecA-dependent manner by a novel mechanism. Mol Microbiol 82:164–179. doi:10.1111/j.1365-2958.2011.07803.x

    PubMed  CAS  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413. doi:10.1099/ijs.0.65723-0

    PubMed  CAS  Google Scholar 

  • Loh JT, Ho SC, de Feijter AW, Wang JL, Schindler M (1993) Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localization of the lectin BJ38 on the bacterial cell surface. Proc Natl Acad Sci U S A 90:3033–3037

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludwig W (2010) Molecular phylogeny of microorganisms: is rRNA still a useful marker. In: Oren A, Papke RT (eds) Molecular phylogeny of microroganisms. Caister Academic Press, Norfolk, pp 65–83. ISBN 978-1-904455-67-7

    Google Scholar 

  • Ludwig W, Klenk HP (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematic. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 49–65

    Google Scholar 

  • Lupwayi NZ, Kennedy CA (2007) Grain legumes in northern great plains: impacts on selected biological soil processes. Agron J 99:1700–1709

    CAS  Google Scholar 

  • Lykidis A, Perez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, Gonzalez B, Kyrpides NC (2010) The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One 5:e9729. doi:10.1371/journal.pone.0009729

    PubMed  PubMed Central  Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analyses and parsimony. Syst Zool 33:83–103

    Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makkar NS, Casida LE Jr (1987) Cupriavidus necator gen. nov., sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int J Syst Evol Microbiol 37:323–326. doi:10.1099/00207713-37-4-323

    Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68. doi:10.1371/journal.pbio.0060068

    PubMed  PubMed Central  Google Scholar 

  • Marlow VL, Haag AF, Kobayashi H, Fletcher V, Scocchi M, Walker GC, Ferguson GP (2009) Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol 191:1519–1527. doi:10.1128/JB.01661-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. doi:10.1099/ijs.0.65392-0

    PubMed  CAS  Google Scholar 

  • Mateos PF, Baker DL, Petersen M, Velazquez E, Jimenez-Zurdo JI, Martínez-Molina E, Squartini A, Orgambide G, Hubbell DH, Dazzo FB (2001) Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can J Microbiol 47:475–487

    PubMed  CAS  Google Scholar 

  • Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950. doi:10.1126/science.286.5441.947

    PubMed  CAS  Google Scholar 

  • McNeil DL, Materne M (2007) Rhizobium management and nitrogen fixation. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 127–143

    Google Scholar 

  • Mergaert P, Van Montagu M, Holsters M (1997) Molecular mechanisms of Nod factor diversity. Mol Microbiol 25:811–817. doi:10.1111/j.1365-2958.1997.mmi526.x

    PubMed  CAS  Google Scholar 

  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173, http://dx.doi.org/10.1104/pp.102.018192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci U S A 103:5230–5235. doi:10.1073/pnas.0600912103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mishra U, Pabbi S (2004) Cyanobacteria: a potential biofertilizer for rice. Resonance 9:6–10. doi:10.1007/BF02839213

    Google Scholar 

  • Moawad H, Badr El-Din SMS, Abdel-Aziz RA (1998) Improvement of biological nitrogen fixation in Egyptian winter legumes through better management of Rhizobium. Plant Soil 204:95–106. doi:10.1023/A:1004335112402

    CAS  Google Scholar 

  • Morel MA, Brana V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. In: Akash G (ed) Crop plant, In Tech publisher, Croatia. http://www.intechopen.com/books/crop-plant/legume-crops-importance-and-use-ofbacterial-inoculation-to-increaseproduction

  • Mulley G, White JP, Karunakaran R, Prell J, Bourdes A, Bunnewell S, Hill L, Poole PS (2011) Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol 80:149–167. doi:10.1111/j.1365-2958.2011.07565.x

    PubMed  CAS  Google Scholar 

  • Mutch LA, Young JPW (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444. doi:10.1111/j.1365-294X.2004.02259.x

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22. doi:10.1099/00207713-46-1-16

    PubMed  CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS (2008) Rhizosphere colonization: molecular determinant from plant-microbe coexistence perspective. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin/Heidelberg

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics, 1st edn. Oxford University Press, New York

    Google Scholar 

  • O’Brian MR, Vance CP, VandenBosch KA (2009) Legume focus: model species sequenced, mutagenesis approaches extended, and debut of a new model. Plant Physiol 151:969. doi:10.1104/pp. 109.900305

    PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. doi:10.1146/annurev-genet-110410-132549

    PubMed  CAS  Google Scholar 

  • Oono R, Denison RF (2010) Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol 154:1541–1548. doi:10.1104/pp.110.163436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oren A (2010) Concepts about phylogeny of microorganisms – an historical overview. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 1–21. ISBN 978-1-904455-67-7

    Google Scholar 

  • Palomares A, Montoya E, Olivares J (1978) Quality and rate of extracellular polysaccharides produced by Rhizobium meliloti and their inducing effect on polygalacturonase production in legume roots as derived from the presence of extrachromosomal DNA. Microbios 22:7–13

    PubMed  CAS  Google Scholar 

  • Parsons R, Silvester WB, Harris S, Gruijters WTM, Bullivant S (1987) Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol 83:728–731

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patriarca EJ, Tate R, Iaccarino M (2002) Key role of bacterial NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222. doi:10.1128/MMBR.66.2.203-222.2002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 26:226–229. doi:10.1099/00207713-26-2-226

    CAS  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979. doi:10.1007/s00709-012-0388-4

    PubMed  Google Scholar 

  • Peoples MB, Giller KE, Herridge DF, Vessey JK (2002) Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation-global perspectives. CABI Publishing, New York, pp 356–360

    Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peters GA, Meeks JC (1989) The Azolla-anabaena symbiosis: basic biology. Annu Rev Plant Physiol Plant Mol Biol 40:193–210. doi:10.1146/annurev.pp. 40.060189.001205

    Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980. doi:10.1126/science.373 8520

    PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R, Thony-Meyer L, Appleby CA, Hennecke H (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Velazquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490. doi:10.1099/ijs.0.65621-0

    PubMed  CAS  Google Scholar 

  • Rashid MH, Schafer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109. doi:10.1016/j.syapm.2011.11.008

    PubMed  Google Scholar 

  • Rashid MH, Gonzalez J, Young JPW, Wink M (2014) Rhizobium leguminosarum is symbiont of lentils in the Middle East and Europe but not in Bangladesh. FEMS Microbiol Ecol 87(1):64–77. doi:10.1111/1574-6941.12190

    CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi:10.1016/j.pbi.2011.04.004

    PubMed  Google Scholar 

  • Rivas R, Willems A, Subbarao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martinez-Molina E, Gillis M, Velazquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53. doi:10.1078/072320203322337308

    PubMed  CAS  Google Scholar 

  • Rivas R, Garcia-Fraile P, Velazquez E (2009a) Taxonomy of bacteria nodulating legumes. Microbiol Insight 2:51–69

    Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willemes A (2009b) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110. doi:10.1016/j.syapm.2008.12.005

    PubMed  CAS  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Georges Truchet G, Prome JC, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 93:15305–15310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci U S A 91:3122–3126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rossen L, Shearman CA, Johnston AW, Downie JA (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes. EMBO J 4:3369–3373

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saha BK, Chowdhury MAH, Rashid MH (2008) Effect of rhizobia and host cultivar on some biochemical constituents and yield of lentil. Int J Biol Res 4:100–107

    Google Scholar 

  • Santos R, Herouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89. doi:10.1094/MPMI.2001.14.1.86

  • Sattar MA, Podder AK, Das ML, Shaikh MAQ, Danso SKA (1998) Evaluation of chickpea and groundnut for N2 fixation and yield in Bangladesh. In: Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia (IAEA-TECDOC-1027), International Atomic Energy Agency, Vienna, Austria, pp 131–146

    Google Scholar 

  • Sawada H, Ieki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702. doi:10.1099/00207713-43-4-694

    PubMed  CAS  Google Scholar 

  • Schlaman HR, Okker RJ, Lugtenberg BJ (1992) Regulation of nodulation gene expression by NodD in rhizobia. J Bacteriol 174:5177–5182

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Hoflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schmid M, Baldani JI, Hartmann A (2006) The genus Herbaspirillum. Prokaryotes 5:141–150. doi:10.1007/0-387-30745-1_7

    Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486

    Google Scholar 

  • Sieberer BJ, Timmers ACJ, Emons AMC (2005) Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol Plant Microbe Interact 18:1195–1204. doi:10.1094/MPMI-18-1195

    PubMed  CAS  Google Scholar 

  • Simmons MP, Bailey CD, Nixon KC (2000) Phylogeny reconstruction using duplicate genes. Mol Biol Evol 17:469–473

    PubMed  CAS  Google Scholar 

  • Skerman VBD, Mcgowan V, Sneath PHA (1980) Approved lists of bacterial names (Amemded). Int J Syst Bacteriol 30:225–420. doi:10.1099/00207713-30-1-225

    Google Scholar 

  • Smit G, Swart S, Lugtenberg BJ, Kijne JW (1992) Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 6:2897–2903. doi:10.1111/j.1365-2958.1992.tb01748.x

    PubMed  CAS  Google Scholar 

  • Smith AB (1994) Rooting molecular trees: problem and strategies. Biol J Linn Soc 51:279–292. doi:10.1006/bijl.1994.1024

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 92:2647–2651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soussana JF, Tallec T (2010) Can we understand and predict the regulation of biological N2 fixation in grassland ecosystems. Nutr Cycl Agroecosyst 88:197–213. doi:10.1007/s10705-009-9335-y

    CAS  Google Scholar 

  • Spaink HP, Okker RJ, Wijffelman CA, Tak T, Goosen-de Roo L, Pees E, van Brussel AA, Lugtenberg BJ (1989) Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J Bacteriol 171:4045–4053

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJ (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130. doi:10.1038/354125a0

    PubMed  CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, London

    Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan XJ, Cheng Y, Li YX, Li YG, Zhou JC (2009) BacA is indispensable for successful Mesorhizobium-Astragalus symbiosis. Appl Microbiol Biotechnol 84:519–526. doi:10.1016/B978-0-12-398264-3.00005-X

    PubMed  CAS  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses. Adv Microb Physiol 60:325–389. doi:10.1016/B978-0-12-398264-3.00005-X

    PubMed  CAS  Google Scholar 

  • Thajuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S, Akbarsha MA, Gunasekaran M (2010) Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265. doi:10.1002/jobm.200900343

    PubMed  CAS  Google Scholar 

  • Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX (2010) Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 73:563–576. doi:10.1111/j.1574-6941.2010.00909.x

    PubMed  CAS  Google Scholar 

  • Timmers AC, Soupene E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G (2000) Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant Microbe Interact 13:1204–1213

    PubMed  CAS  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo A, Rivas R, Ludena D, Mateos PF, Martinez-Molina E, Velazquez E (2005) Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327. doi:10.1128/AEM.71.3.1318-1327.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res 65:211–228. doi:10.1016/S0378-4290(99)00088-X

    Google Scholar 

  • Urakami T, Araki H, Oyanagi H, Suzuki KI, Komagata K (1992) Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Evol Microbiol 42:84–92. doi:10.1099/00207713-42-1-84

    Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516. doi:10.1007/BF02857893

    Google Scholar 

  • Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983. doi:10.1099/ijs.0.02677-0

    PubMed  CAS  Google Scholar 

  • Valverde A, Velazquez E, Fernandez-Santos F, Vizcaino N, Rivas R, Mateos PF, Martinez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989. doi:10.1099/ijs.0.63551-0

    PubMed  CAS  Google Scholar 

  • van de Peer Y (2003) Phylogeny inference based on distance methods. In: Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, pp 101–119

    Google Scholar 

  • Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4305

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vessey JK (2004) Benefits of inoculating legume crops with Rhizobia in the Northern Great Plains. Crop Manage. Online: http://www.plantmanagementnetwork.org/pub/cm/review/2004/legume

  • Vinuesa P, Silvaa C, Wernerb D, Martinez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. doi:10.1016/j.ympev.2004.08.020

    PubMed  CAS  Google Scholar 

  • Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 26:1126–1129. doi:10.1126/science.1184096

    CAS  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14. doi:10.1007/s11104-006-9058-7

    CAS  Google Scholar 

  • Willems A, Fernandez Lopez M, Munoz-Adelantado E, Goris J, De Vos P, Martinez-Romero E, Toro N, Gillis M (2003) Description of New Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Cassida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an Opinion. Int J Syst Evol Microbiol 53:1207–1217. doi:10.1099/ijs.0.02264-0

    PubMed  CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    PubMed  CAS  Google Scholar 

  • Wolfe DW (2001) Tales from the underground: a natural history of subterranean life. Perseus Publishing, Cambridge, MA

    Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    PubMed  CAS  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    PubMed  CAS  Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52. doi:10.1007/BF00035054

    CAS  Google Scholar 

  • Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int J Syst Evol Microbiol 53:2107–2110. doi:10.1099/ijs.0.02665-0

    PubMed  CAS  Google Scholar 

  • Young JM, Kuykendall LD, Martinenez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103. doi:10.1099/00207713-51-1-89

    PubMed  CAS  Google Scholar 

  • Zheng L, White RH, Dean DR (1997) Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J Bacteriol 179:5963–5966

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zurdo-Pineiro JL, Rivas R, Trujillo ME, Vizcaıno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martinez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788. doi:10.1099/ijs.0.64613-0

    PubMed  CAS  Google Scholar 

  • Zurkowski W, Lorkiewicz Z (1976) Plasmid deoxyribonucleic acid in Rhizobium trifolii. J Bacteriol 128:481–484

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Harun-or Rashid or Mohd. Sayeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rashid, M.Ho., Krehenbrink, M., Akhtar, M.S. (2015). Nitrogen-Fixing Plant-Microbe Symbioses. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-09132-7_4

Download citation

Publish with us

Policies and ethics