Skip to main content

Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 15))

Abstract

Weeds have known to affect human activities including agriculture since ages. Looking at the global scenario the major contributors of crop loss are weeds, followed by animals and pathogens. World War II started the ‘chemical era’ for the development of herbicide. Herbicides are used to kill weeds and are still the largest product type accounting for 47.6 % of global pesticide sales followed by insecticide (29.4 %), fungicide (17.5 %) and others (5.5 %). Herbicides have been classified in various ways but classification based on site of action of herbicide is comparatively better as herbicide resistance management can be handled more properly and effectively. Commonly used herbicides globally are generally broad spectrum and non-selective which restricts their use in arable lands. Thus there is need to modify the crops genetically so that the crop plants remain unaffected by herbicide application. Different strategies have been used either individually or in combination to develop transgenic plants. Reports suggest that the global area covered by herbicide-resistant transgenic plant outnumbers the area covered by any other genetically modified plants. However, inadvertent use of herbicides has helped in evolution of resistant weeds. This problem is now a subject of discussion worldwide. Integrated herbicide management is important to avoid selection pressure for the evolution of resistance. Transgenic plants have really helped the mankind in increasing the crop yield but use of transgenic plant is still a debatable topic which needs meticulous research, observations and experimentations for a final statement either in favour or against.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen RN (1991) The north central weed control conference: origin and evolution. North Central Weed Sci. Soc, Champaign. 206 p

    Google Scholar 

  • Andersen RN, Gronwald JW (1987) Non-cytoplasmic inheritance of atrazine – tolerance in velvet leaf (Abutilon theophrasti). Weed Sci 35:496–498

    CAS  Google Scholar 

  • Aragao FJL, Vianna GR, Albino MMC, Rech EL (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302

    CAS  Google Scholar 

  • Barber J (1987) Photosynthetic reaction centres: a common link. Trends Biochem Sci 12:321–326

    CAS  Google Scholar 

  • Barry G, Padgette SR (1992) Glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthases. World Patent, WO 92/04449

    Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 139–145

    Google Scholar 

  • Bayer E, Gugel K, Hagele K, Hagenmaier H, Jessipow S, Koning W, Zahner H (1972) Stoffwechselprodukte von mikroorganismen. Phosphinothricin und Phospinothricyl-alanyl-alanin. Helv Chimica Acta 55:224–239

    CAS  Google Scholar 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance in cotton. Theor Appl Genet 83:645–649

    PubMed  CAS  Google Scholar 

  • Bender DA (1985) Amino acid metabolism, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Bishop T, Powles SB, Comic G (1987) Mechanism of paraquat resistance in Hordeumg laucum. II. Paraquat up take and translocation. Aust J Plant Physiol 14:539–547

    CAS  Google Scholar 

  • Bridges DC (1992) Crop losses due to weeds in the United States. Weed Sci Soc Am, Champaign, p 403

    Google Scholar 

  • Bridges DC (1994) Impact of weeds on human endeavours. Weed Technol 8:392–395

    Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    PubMed  CAS  Google Scholar 

  • Christoffers MJ, Nandula VK, Mengistu LW, Messersmith CG (2004) Altered herbicide target sites: implications for herbicide-resistant weed management. In: Inderjit (ed) Weed biology and management. Kluwer, Dordrecht, pp 199–210

    Google Scholar 

  • Christopher JT, Powles SB, Liljegren DR, Holtum JAM (1991) Cross resistance to herbicides in annual ryegrass (Lolium rigidum) II. Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol 95(1):036–043

    Google Scholar 

  • Christou OP, Ford TL, Kofro M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9:957–962

    Google Scholar 

  • Cobb A (1992) The transfer of herbicide resistance to crops. In: Herbicides and plant physiology. Chapman & Hall, London/New York, pp 145–151

    Google Scholar 

  • Comai L, Sen LC, Stalker DM (1983) An altered aroA gene product confers resistance to the herbicide glyphosate. Science 22:370–371

    Google Scholar 

  • Comai L, Facciotti D, Niatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhinurium confers tolerance to glyphosate. Nature 317:741–744

    CAS  Google Scholar 

  • Commission of Life Sciences (2000) The future role of pesticides in US agriculture. Committee on the future role of pesticides in US agriculture, Board on agriculture and natural resources and Board on environmental studies and toxicology, National Research Council. National Academy Press, Washington, DC, p 332

    Google Scholar 

  • Cremlyn RJ (1991) Agrochemicals: preparation and mode of action. Wiley, Great Britain

    Google Scholar 

  • D’Halluin K, Bossut M, Mazur B, Leeman J, Botterman J (1992) Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Nat Biotechnol 10:309–314

    Google Scholar 

  • Daniell H (1999a) GM crops: public perception and scientific solutions. Trends Plant Sci 4(12):467–469

    PubMed  Google Scholar 

  • Daniell H (1999b) New tools for chloroplast genetic engineering. Nat Biotechnol 17(9):855–856

    PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16(4):345–348

    PubMed  CAS  Google Scholar 

  • DeBlock M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Montagu MV, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    CAS  Google Scholar 

  • Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM (1987) Targeting a herbicide resistant enzyme from Escherichia coli to chloroplasts of higher plants. Nat Biotechnol 5:579–584

    CAS  Google Scholar 

  • Devine MD, Eberlein CV (1997) Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology, biochemistry and molecular biology. IOS, Amsterdam, pp 159–185

    Google Scholar 

  • Devine MD, Preston C (2000) The molecular basis of herbicide resistance. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanisms of action. CRC, Boca Raton, pp 72–104

    Google Scholar 

  • Devine MD, Duke SO, Fedtke C (1993) Physiology of herbicide action. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dhingra A, Daniell H (2004) Engineering herbicide resistance pathways in plastids. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Kluwer Academic Publishers, Dordrecht, pp 491–512

    Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    PubMed  CAS  Google Scholar 

  • Dodge AD (1991) Photosynthesis. In: Kirkwood RC (ed) Target sites for herbicide action. Plenum Press, New York, pp 1–28

    Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134. J Bacteriol 161:85–90

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dyer WE, Weller SC, Bressan R, Hermann K (1988) Glyphosate tolerance in tobacco (Nicotiana tabacum L.). Plant Physiol 88:661–666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eberlin CV, Guittieri MJ, Berger PH, Fleming JK, Mallory-Smith CA, Thil DC, Baerg RJ, Belkmap WR (1999) Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci 47:383–392

    Google Scholar 

  • Erickson JM, Rahire M, Rochaix JD, Mets L (1985) Herbicide resistance and cross-resistance: changes at three distinct sites in the herbicide-binding protein. Science 228(4696):204–207

    PubMed  CAS  Google Scholar 

  • Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schonbrunn E (2002) How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta 216:129–135

    PubMed  CAS  Google Scholar 

  • Falco MC, Tulmann-Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    CAS  Google Scholar 

  • FAO (2009) How to feed the world in 2050. FAO, Rome

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW): managing systems at risk. fao.org/nr/solaw/solaw-home/en/. Accessed July 2013

  • Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5:726–730

    CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosphate’s molecular mode of action. In: Glyphosate: a unique global herbicide. American Chemical Society, Washington, DC, pp 521–642

    Google Scholar 

  • Freyssinet G, Leroux B, Lebrun M, Pelissier B, Sailland A, Pallett KE (1989) Transfer of bromoxynil resistance into crops. Paper presented at the Brighton Crop Protection Conference, Farnham

    Google Scholar 

  • Fukumori F, Hausinger RP (1993) Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an alpha-ketoglutarate-dependent dioxygenase. J Bacteriol 175(7):2083–2086

    PubMed  CAS  PubMed Central  Google Scholar 

  • Funke T, Han H, Healy-Fried ML, Fischer M, Schonbrunn E (2006) Molecular basis for the herbicide resistance of roundup ready crops. Proc Natl Acad Sci U S A 103:13010–13015

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gautham KC, Mishra JS (1995) Problems prospects and new approaches in weed management. Pestic Info 21:7–19

    Google Scholar 

  • Goloubinoff P, Edelman M, Hallick RB (1984) Chloroplast-coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nucleic Acids Res 12(24):9489–9496

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mngano ML, Adams TR, Daines RJ, Start WG, O’Brian JV, Chambers SA, Adams WR Jr, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Green MB, Hartley GS, West TF (1987) Chemicals for crop improvement and pest management, 3rd edn. Pergamon Press, Oxford, p 207

    Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17(9):361–366

    PubMed  CAS  Google Scholar 

  • Gruys KJ, Sikorski JA (1999) Inhibitors of tryptophan, phenylalanine, and tyrosine biosynthesis as herbicides. In: Singh B (ed) Plant amino acids. Marcel Dekker, Inc., New York, pp 357–384

    Google Scholar 

  • Harker AR, Olsen RH, Seidler RJ (1989) Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR. J Bacteriol 171:314–320

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haslam E (1993) Shimikic acid: metabolism and metabolites. John Wiley and Sons Inc, Chichester

    Google Scholar 

  • Hattori J, Rutledge R, Labbe H, Brown D, Sunohara G, Miki B (1992) Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxy acid synthase gene with separate mutations for selective resistance. Mol Gen Genet 232:167–173

    PubMed  CAS  Google Scholar 

  • Haughn GW, Somerville C (1986) Sulfonylurea resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204:430–434

    CAS  Google Scholar 

  • Hay JR (1974) Gain to the grower from weed science. Weed Sci 22(5):439–442

    Google Scholar 

  • Heap I (2013) The international survey of herbicide resistant weeds. Available www.weedscience.org. Accessed on July 2013

  • Heap IM, Knight R (1986) The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust J Agric Res 37:149–156

    CAS  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hilton HW (1957) Herbicide tolerant strain of weeds. Hawain Sugar Planters Association Annual Reports, p 69

    Google Scholar 

  • Holt JS (1993) Mechanisms and agronomic aspects of herbicide resistance. Annu Rev Plant Physiol Plant Mol Biol 44:203–229

    CAS  Google Scholar 

  • http://www.farmchemicalsinternational.com/article/30890/global-demand-for-agricultural-pesticides-to-approach-59-billion-in-2016. Accessed July 2013

  • Huang F, Buschman LL, Higgins RA, McGaughey WH (1999) Inheritance of Resistance to Bacillus thuringiensis Toxin (Dipel ES) in the European Corn Borer. Science 284(5416):965–967

    PubMed  CAS  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops for 2012, ISAAA brief no. 44. ISAAA, Ithaca

    Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgenic Res 6:385–392

    CAS  Google Scholar 

  • Kemp MS, Caseley JC (1991) Synergists to combat herbicide resistance. In: Caseley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in weeds and crops. Butterworth-Heinemann, Oxford, pp 279–292

    Google Scholar 

  • Kemp MS, Moss SR, Thomas TH (1990) Herbicide resistance in Alopecurus myosuroides. In: Green MB, LeBaron HM, Moberg WK (eds) Managing resistance to agrochemicals: from fundamental research to practical strategies. ACS Books, Washington, DC, pp 376–393

    Google Scholar 

  • Klingman GC, Ashton FM, Noordhoff LJ (1982) Weed science: principles and practices. John Wiley & Sons, New York, p 449

    Google Scholar 

  • Komoba D, Sandermann H Jr (1992) Plant metabolism of herbicides with C–P bonds: phosphinothricin. Pestic Biochem Physiol 43:95–102

    Google Scholar 

  • Kondo Y, Shomura T, Ogawa Y, Tsuroka T, Watanabe K, Totukawa T, Suzuki T, Moriyama T, Yoshida J, Inouye S, Niida T (1973) Isolation and physicochemical and biological characterization of SF-1293 substances. Sci Rep Meiji Seika Kaisha 13:34–43

    Google Scholar 

  • Krieg LC, Walker MA, Senaratna T, McKersie BD (1990) Growth, ammonia accumulation and glutamine synthetase activity in alfalfa (Medicago sativa L.) shoots and cells treated with phosphinothricin. Plant Cell Rep 9:80–83

    PubMed  CAS  Google Scholar 

  • Last DI, Llewellyn DJ (1999) A detoxification gene in transgenic Nicotiana tabacum confers 2,4-D tolerance. Weed Sci 47:401–404

    CAS  Google Scholar 

  • LeBaron HM, Gressel J (eds) (1982) Herbicide resistance in plants. Wiley, New York

    Google Scholar 

  • Lebrun M, Sailland A, Freyssinet G, Degryse E (2003) Mutated 5-enolpyruvylshikimate-3-phosphate synthase, gene coding for said protein and transformed plants containing said gene. US Patent 6,566,587

    Google Scholar 

  • Lowery RF (1987) Granular formulations and application. In: McWhorter CG, Gebhardt MR (eds) Methods of applying herbicides, WSSA monograph 4. Weed Sci. Soc. Amer, Champaign, pp 165–176. 358 pp

    Google Scholar 

  • Lyon BR, Llewellyn DJ, Huppatz JL, Dennis ES, Peacock WJ (1989) Expression of a bacterial gene in transgenic tobacco confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol Biol 13:533–540

    PubMed  CAS  Google Scholar 

  • Malik J, Barry G, Kishore G (1989) The herbicide glyphosate. Biofactors 2:17–25

    PubMed  CAS  Google Scholar 

  • Mallory-Smith CA, Retzinger EJ Jr (2003) Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol 17:605–619

    CAS  Google Scholar 

  • Manabe Y, Tinker N, Colville A, Miki B (2007) CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana. Plant Cell Physiol 48:1340–1358

    PubMed  CAS  Google Scholar 

  • Manderscheid R, Wild A (1986) Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J Plant Physiol 123:135–142

    CAS  Google Scholar 

  • Marth PC, Mitchell JW (1944) 2,4-Dichlorophenoxyacetic acid as a differential herbicide. Bot Gaz 106:224–232

    CAS  Google Scholar 

  • Marzabadi MR, Gruys KJ, Pansegrau PD, Walker MC, Yuen HK, Sikorski JA (1996) An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies. Biochemistry 35:4199–4210

    PubMed  CAS  Google Scholar 

  • McCloskey WB, Holt JS (1990) Triazine resistance in Senecio vulgaris parental and nearly isonuclear backcrossed biotypes is correlated with reduced productivity. Plant Physiol 92:954–962

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDowell LM, Schmidt A, Cohen ER, Studelska DR, Schaefer J (1996) Structural constraints on the ternary complex of 5-enolpyruvylshikimate 3-phosphate synthase from rotational-echo doubleresonance NMR. J Mol Biol 256:160–171

    PubMed  CAS  Google Scholar 

  • McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6:2–12

    PubMed  Google Scholar 

  • McIntosh L, Hirschberg J (1983) Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222:1346–1349

    PubMed  Google Scholar 

  • Mitchell JW, Davis FF, Marth PG (1944) Turf weed control with plant growth regulators. Golfdom 18:34–36

    Google Scholar 

  • Mohapatra U, McCabe MS, Power JB, Schepers F, Van der Arend A, Davey MR (1999) Expression of the bar gene confers herbicide resistance in transgenic lettuce. Transgenic Res 8:33–44

    CAS  Google Scholar 

  • Montague A, Ziauddin A, Lee R, Ainley WM, Strommer J (2007) High-efficiency phosphinothricin-based selection for alfalfa transformation. Plant Cell Tissue Org Cult 91(1):29–36

    CAS  Google Scholar 

  • Moss SR (1990) Herbicidec ross-resistancein slender foxtail (Alopecurus myosuroides). Weed Sci 38:492–496

    CAS  Google Scholar 

  • Moss SR, Cussans GW (1985) Variability in the susceptibility of Alopecurus myosuroides (black-grass) to chlortoluron and isoproturon. Asp Appl Biol 9:91–98

    Google Scholar 

  • Mulwa RMS, Mwanza LM (2006) Biotechnology approaches to developing herbicide tolerance/selectivity in crops. Afr J Biotechnol 5(5):396–404

    CAS  Google Scholar 

  • Nafzinger ED, Widholm JM, Steinrucken HC, Kilmer JL (1984) Selection and characterization of a carrot line tolerant to glyphosate. Plant Physiol 76:571–574

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Ott K, Kwagh J, Stockton GW, Sidorov V, Kakefuda G (1996) Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol 263:359–368

    PubMed  CAS  Google Scholar 

  • Pacanoski Z (2007) Herbicide use: benefits for society as a whole- a review. Pak J Weed Sci Res 13(1–2):135–147

    Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL, Kishore GM, Fraley RT (1996) New weed control opportunities: development of soybeans with a Roundup Ready TM gene. In: Duke SO (ed) Herbicide resistant crops. CRC Press, Boca Raton, pp 53–84

    Google Scholar 

  • Pang SS, Guddat LW, Duggleby RG (2003) Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem 278:7639–7644

    PubMed  CAS  Google Scholar 

  • Park MY, Yi NR, Lee HY, Kim ST, Kim M, Park JH, Kim JK, Lee JS, Cheong JJ, Choi YD (2002) Generation of chlorsulfuron-resistant transgenic garlic plants (Allium sativum L.) by particle bombardment. Mol Breed 9:171–181

    CAS  Google Scholar 

  • Parry MAJ, Madjwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Ext Bot 60:2817–2825

    CAS  Google Scholar 

  • Peng R-H, Tian Y-S, Xiong A-S, Zhao W, Fu X-Y, Han H-J, Chen C, Jin X-Y, Yao Q-H (2012) A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PLoS One 7(8):e39579. doi:10.1371/journal.pone.0039579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perkins EJ, Lurquin PF (1988) Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 170:5669–5672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pieper DH, Engesser DH, Knackmuss HJ (1989) Regulation of catabolic pathways of phenoxyacetic acids and phenol in Alcaligenes eutrophus JMP 134. Arch Microbiol 151:365–371

    CAS  Google Scholar 

  • Pline-Srnic W (2006) Physiological mechanisms of glyphosate resistance. Weed Technol 20:290–300

    CAS  Google Scholar 

  • Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance-different approaches through protein engineering. FEBS J 278(16):2753–2766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Powles SB (2010) Gene amplification delivers glyphosate- resistant weed evolution. Proc Natl Acad Sci U S A 107:955–956

    PubMed  CAS  PubMed Central  Google Scholar 

  • Preston C, Mallory-Smith CA (2001) Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. In: Powles SB, Shaner DL (eds) Herbicide resistance and world grains. CRC, Boca Raton, pp 23–60

    Google Scholar 

  • Radosevich SR, Appleby AP (1973) Relatives susceptibility of two common groundsel (Senecio vulgaris L.) biotypes to 6 s-triazines. Agron J 65:553–555

    Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319

    CAS  Google Scholar 

  • Rao VS (2000) Principles of weed science, 2nd edn. CRC Press, New Hampshire

    Google Scholar 

  • Reade JPH, Cobb AH (2002) Herbicides: modes of action and metabolism. In: Naylor REL (ed) Weed management handbook. Blackwell Science, Oxford, pp 134–170

    Google Scholar 

  • Retzinger EJ, Mallory-Smith C (1997) Classification of herbicides by site of action for weed resistance management strategies. Weed Technol 11:384–393

    CAS  Google Scholar 

  • Ryan GF (1970) Resistance of common groundsel to simazine and atrazine. Weed Sci 18:614–616

    CAS  Google Scholar 

  • Saari LL, Mauvais CJ (1996) Chapter 8, Sulfonylurea herbicide-resistant crops. In: Duke SO (ed) Herbicide resistant crops. CRC Press, Boca Raton, pp 127–142

    Google Scholar 

  • Sanders GE, Pallett KE (1985) In vitro activity and binding characteristics of the hydroxybenzonitriles in chloroplasts isolated from Matricaria inodora and Viola arvensis. Pestic Biochem Physiol 24:317–325

    CAS  Google Scholar 

  • Saroha MK, Sridhar P, Malik VS (1998) Glyphosate-tolerant crops: genes and enzymes. J Plant Biochem Biotechnol 7:65–72

    CAS  Google Scholar 

  • Sarria R, Torres E, Angel F, Chavarriaga P, Roca WM (2000) Transgenic plants of cassava (Manihot esculenta) with resistance to basta obtained by Agrobacterium-mediated transformation. Plant Cell Rep 19:339–344

    CAS  Google Scholar 

  • Sauer H, Wild A, Ruhle W (1987) The effect of phosphinothricin (glufosinate) on photosynthesis II. The causes of inhibition of photosynthesis. Z Naturforsch 42c:270–278

    Google Scholar 

  • Schmidt RR (1998) Classification of herbicides according to mode of action. Bayer Ag, Leverkusen, p 8

    Google Scholar 

  • Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B (2012) Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res 21(6):1255–1264

    PubMed  CAS  Google Scholar 

  • Schönbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JNS, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98:1376–1380

    PubMed  PubMed Central  Google Scholar 

  • Schulze-Siebert D, Heineke D, Scharf H, Schultz G (1984) Pyruvate derived amino acids in spinach chloroplasts – synthesis and regulation during photosynthetic carbon metabolism. Plant Physiol 76:465–471

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shaner DL, Singh BK (1992) How does inhibition of amino acid biosynthesis kill plants? In: Singh B, Flores H, Shannon J (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 174–183

    Google Scholar 

  • Shaner DL, Singh BK (1997) Acetohydroxyacid synthase inhibitors. In: Roe RM (ed) Herbicide activity: toxicology, biochemistry and molecular biology. Ios Press, Washington, DC, pp 69–110

    Google Scholar 

  • Shaner DL, Bascomb NF, Smith W (1996) Imidazolinone-resistant crops: selection, characterization, and management. In: Duke SO (ed) Herbicide-resistant crops: agricultural, environmental, economic, regulatory, and technical aspects. CRC Lewis, New York, pp 143–157

    Google Scholar 

  • Shimizu T, Nakayama I, Nagayama K, Miyazawa T, Nezu Y (2002) Acetolactate synthase inhibitors. In: Bger P, Wakabayashi K, Hirai K (eds) Herbicide classes in development. Springer, Berlin, pp 1–41

    Google Scholar 

  • Singh BK, Shaner DL (1995) Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7:935–944

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) Plant biotechnology: the genetic manipulation of plants, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Smeda RJ, Vaughn KC (1997) Mechanisms of resistance to herbicides. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals, Chemistry of plant protection, vol. 13. Springer, Berlin/Heidelberg, pp 79–123

    Google Scholar 

  • Sost D, Amrhein N (1990) Substitution of Gly-96 to Ala in the 5- enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae results in a greatly reduced affinity for the herbicide glyphosate. Arch Biochem Biophys 282:433–436

    PubMed  CAS  Google Scholar 

  • Stalker DM, McBride KE (1987) Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. J Bacteriol 169:955–960

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stalker DM, Hiatt WR, Comai L (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J Biol Chem 260:4724–4728

    PubMed  CAS  Google Scholar 

  • Stalker DM, Malyj LD, McBride KE (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide-sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    PubMed  CAS  Google Scholar 

  • Stalker DM, Kiser JA, Baldwin G, Coulombe B, Houck CM (1996) Cotton weed control using the BXN system. In: Duke SO (ed) Herbicide resistant crops. Lewis, Boca Raton, pp 93–105

    Google Scholar 

  • Stallings WC, Abdel-Meguid SS, Lim LW, Shieh H, Dayringer HE, Leimgruber NK, Stegeman RA, Anderson KS, Sikorski JA, Padgette SR, Kishore GM (1991) Structure and topological symmetry of the glyphosate target 5-enopyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proc Natl Acad Sci U S A 88:5046–5050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stegink SJ, Vaughn KC (1988) Norflurazon SAN-9789 reduced abscisic acid levels in cotton seedlings: a glandless isoline is more sensitive than it’s glanded counterpart. Pest Biochem Physiol 31:269–275

    CAS  Google Scholar 

  • Steinrucken H, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    PubMed  CAS  Google Scholar 

  • Steinrucken H, Schutz A, Amrhein N, Porter C, Fraley R (1986) Overproduction of 5-enolphyruvylshikimate-3-phosphate synthase in glyphosate tolerant Petunia hybrida cell line. Arch Biochem Biophys 244:169–178

    PubMed  CAS  Google Scholar 

  • Stidham MA, Singh BK (1991) Imidazolinone-acetohydroxyacid synthase interactions. In: Shaner DL, O’Conner SL (eds) The imidazolinone herbicides. CRC Press, Boca Raton, pp 71–90

    Google Scholar 

  • Streber WR, Willmitzer L (1989) Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Nat Biotechnol 7:811–816

    CAS  Google Scholar 

  • Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) Accumulation of ammonia in plants treated with bialaphos. J Pestic Sci 11:33–37

    CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone- tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    PubMed  CAS  Google Scholar 

  • Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204

    PubMed  CAS  Google Scholar 

  • Thompson CJ, Movva RN, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 9:2519–2523

    Google Scholar 

  • Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700–712

    CAS  Google Scholar 

  • Trebst A (1987) The three-dimensional structure of the herbicide binding niche on the reaction centre polypeptides of photosystem II. Z Naturforsch 42c:742–750

    Google Scholar 

  • USEPA (2013) United States Environmental Protection Agency. http://www.epa.gov/pesticides/about/. Accessed July 2013

  • Vasil V, Castillio AM, Fromm M, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryonic callus. Nat Biotechnol 10:667–674

    CAS  Google Scholar 

  • Vaughn KC, Duke SO (1991) Biochemical basis of herbicide resistance. Chem Plant Protect 7:141–169

    CAS  Google Scholar 

  • Vaughn KC, Vaughan MA, Camilleri P (1989) Lack of cross resistance of paraquat-resistant hairy fleabane (Conyza bonariensis) to other toxic oxygen generators indicates enzymatic protection is not the resistance mechanism. Weed Sci 37:5–11

    CAS  Google Scholar 

  • Vencill WK (ed) (2002) Herbicide handbook. Weed Science Society of America, Lawrence

    Google Scholar 

  • Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14:1274–1278

    PubMed  CAS  Google Scholar 

  • Wendler C, Barniske M, Wild A (1990) Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynth Res 24(1):55–61

    PubMed  CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. The Macmillan Co., New York, p 294

    Google Scholar 

  • Wild A, Manderscheid R (1984) The effect of phosphinothricin on the assimilation of ammonia in plants. Z Naturforsch 39c:500–504

    CAS  Google Scholar 

  • Wohlleben W (2000) Nucleotide sequence of phosphinothricin-N-acetyl- transferase gene from Streptomyces viridochromogenes, TueH94, and its expression in Nicotiana tabacum. Gene 70:25–37

    Google Scholar 

  • Yadav A, Malik RK (2005) Herbicide resistant Phalaris minor in wheat–a sustainability issue. Resource book. Department of Agronomy and Directorate of Extension Education, CCSHAU, Hisar, p 152

    Google Scholar 

  • Yaduraju NT (2006) Herbicide resistant crops in weed management. In: The extended summaries, golden jubilee national symposium on conservation agriculture and environment, Banaras Hindu University, Banaras, 26–28 October, pp 297–298

    Google Scholar 

  • Yan H-Q, Chang S-H, Tian Z-X, Zhang L, Sun Y-C, Li Y, Wang J, Wang Y-P (2011) Novel AroA from Pseudomonas putida confers tobacco plant with high tolerance to glyphosate. PLoS One 6(5):e19732. doi:10.1371/journal.pone.0019732

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoon K, Cole-Strauss A, Kmiec EB (1996) Targeted gene correction in mammalian cells mediated by a chimeric RNA/DNA oligonucleotide. Proc Natl Acad Sci U S A 93:2071–2076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotide. Nat Biotechnol 18:555–558

    PubMed  CAS  Google Scholar 

  • Zurawski G, Bonhert H-J, Whitfield ΡR, Bottomley W (1982) Nucleotide sequence of the gene for the 32000-M, thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38950. Proc Natl Acad Sci U S A 79:7699–7703

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Vats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vats, S. (2015). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-09132-7_3

Download citation

Publish with us

Policies and ethics