Skip to main content

History of the Robotic Surgical System

  • Chapter
  • 818 Accesses

Abstract

Robotics has its roots back to ancient human history. The current conception of the surgical robot began with NASA, as a government project in telepresence surgery for use in remote battlefield surgery. The concept then quickly evolved into what we use today in the operating room. The da Vinci robot, the most commonly used robotic platform, is now pervasively used for all types of surgery. This chapter serves to explore the origins of the surgical robot and provide a brief overview of its current and, perhaps, future applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yates DR, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011;108(11):1708–13; discussion 1714.

    Article  PubMed  Google Scholar 

  2. Satava RM. Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech. 2002;12(1):6–16.

    Article  PubMed  Google Scholar 

  3. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  4. Falk V, Walther T, Autschbach R, Diegeler A, Battellini R, Mohr FW. Robot-assisted minimally invasive solo mitral valve operation. J Thorac Cardiovasc Surg. 1998;115(2):470–1.

    Article  CAS  PubMed  Google Scholar 

  5. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP® and ZEUS® to da Vinci®. J Visc Surg. 2011;148(5 Suppl):e3–8.

    Article  CAS  PubMed  Google Scholar 

  6. Schuessler WW, Schulam PG, Clayman RV, Kavoussi LR. Laparoscopic radical prostatectomy: initial short-term experience. Urology. 1997;50(6):854–7.

    Article  CAS  PubMed  Google Scholar 

  7. Menon M, Tewari A, Baize B, Guillonneau B, Vallancien G. Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti Urology Institute experience. Urology. 2002;60(5):864–8.

    Article  PubMed  Google Scholar 

  8. Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, et al. Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol. 2012;187(6):2087–92.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tsui C, Klein R, Garabrant M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc. 2013;27(7):2253–7.

    Article  PubMed  Google Scholar 

  10. Trinh QD, Sammon J, Sun M, Ravi P, Ghani KR, Bianchi M, et al. Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample. Eur Urol. 2012;61(4):679–85.

    Article  PubMed  Google Scholar 

  11. American Cancer Society. What are the key statistics about kidney cancer. 2014. http://www.cancer.org/cancer/kidneycancer/detailedguide/kidney-cancer-adult-key-statistics. Accessed 25 Aug 2014.

  12. Huang WC, Levey AS, Serio AM, Snyder M, Vickers AJ, Raj GV, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol. 2006;7(9):735–40.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Uzzo RG, Novick AC. Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol. 2001;166(1):6–18.

    Article  CAS  PubMed  Google Scholar 

  14. Abouassaly R, Alibhai SM, Tomlinson G, Timilshina N, Finelli A. Unintended consequences of laparoscopic surgery on partial nephrectomy for kidney cancer. J Urol. 2010;183(2):467–72.

    Article  PubMed  Google Scholar 

  15. Benway BM, Bhayani SB, Rogers CG, Dulabon LM, Patel MN, Lipkin M, et al. Robot assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: a multi-institutional analysis of perioperative outcomes. J Urol. 2009;182(3):866–72.

    Article  PubMed  Google Scholar 

  16. Khalifeh A, Autorino R, Hillyer SP, Laydner H, Eyraud R, Panumatrassamee K, et al. Comparative outcomes and assessment of trifecta in 500 robotic and laparoscopic partial nephrectomy cases: a single surgeon experience. J Urol. 2013;189(4):1236–42.

    Article  PubMed  Google Scholar 

  17. Liu JJ, Leppert JT, Maxwell BG, Panousis P, Chung BI. Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Urol Oncol. 2014;32(4):473–9.

    Article  PubMed  Google Scholar 

  18. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001;19(3):666–75.

    CAS  PubMed  Google Scholar 

  19. Guillotreau J, Game X, Mouzin M, Doumerc N, Mallet R, Sallusto F, et al. Radical cystectomy for bladder cancer: morbidity of laparoscopic versus open surgery. J Urol. 2009;181(2):554–9. discussion 559.

    Article  PubMed  Google Scholar 

  20. Beecken WD, Wolfram M, Engl T, Bentas W, Probst M, Blaheta R, et al. Robotic-assisted laparoscopic radical cystectomy and intra-abdominal formation of an orthotopic ileal neobladder. Eur Urol. 2003;44(3):337–9.

    Article  PubMed  Google Scholar 

  21. Bochner BH, Sjoberg DD, Laudone VP, Group MSKCCBCST. A randomized trial of robot-assisted laparoscopic radical cystectomy. N Engl J Med. 2014;371(4):389–90.

    Article  CAS  PubMed  Google Scholar 

  22. Niegisch G, Albers P, Rabenalt R. Perioperative complications and oncological safety of robot-assisted (RARC) vs. open radical cystectomy (ORC). Urol Oncol. 2014;32(7):966–74.

    Article  PubMed  Google Scholar 

  23. Carpentier A, Loulmet D, Aupecle B, Kieffer JP, Tournay D, Guibourt P, et al. Computer assisted open heart surgery. First case operated on with success. C R Acad Sci III. 1998;321(5):437–42.

    Article  CAS  PubMed  Google Scholar 

  24. Mihaljevic T, Jarrett CM, Gillinov AM, Williams SJ, DeVilliers PA, Stewart WJ, et al. Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized. J Thorac Cardiovasc Surg. 2011;141(1):72–80. e1–4.

    Article  PubMed  Google Scholar 

  25. Seco M, Cao C, Modi P, Bannon PG, Wilson MK, Vallely MP, et al. Systematic review of robotic minimally invasive mitral valve surgery. Ann Cardiothorac Surg. 2013;2(6):704–16.

    PubMed Central  PubMed  Google Scholar 

  26. Kent M, Wang T, Whyte R, Curran T, Flores R, Gangadharan S. Open, video-assisted thoracic surgery, and robotic lobectomy: review of a national database. Ann Thorac Surg. 2014;97(1):236–42. discussion 242-4.

    Article  PubMed  Google Scholar 

  27. Sarkaria IS, Rizk NP. Robotic-assisted minimally invasive esophagectomy: the Ivor Lewis approach. Thorac Surg Clin. 2014;24(2):211–22. 2.

    Article  PubMed  Google Scholar 

  28. Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350(20):2050–9.

    Article  Google Scholar 

  29. Casillas Jr MA, Leichtle SW, Wahl WL, Lampman RM, Welch KB, Wellock T, et al. Improved perioperative and short-term outcomes of robotic versus conventional laparoscopic colorectal operations. Am J Surg. 2014;208(1):33–40.

    Article  PubMed  Google Scholar 

  30. Delaney CP, Lynch AC, Senagore AJ, Fazio VW. Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum. 2003;46(12):1633–9.

    Article  PubMed  Google Scholar 

  31. Deutsch GB, Sathyanarayana SA, Gunabushanam V, Mishra N, Rubach E, Zemon H, et al. Robotic vs. Laparoscopic colorectal surgery: an institutional experience. Surg Endosc. 2012;26(4):956–63.

    Article  PubMed  Google Scholar 

  32. deSouza AL, Prasad LM, Park JJ, Marecik SJ, Blumetti J, Abcarian H. Robotic assistance in right hemicolectomy: is there a role? Dis Colon Rectum. 2010;53(7):1000–6.

    Article  PubMed  Google Scholar 

  33. Heald RJ, Moran BJ, Ryall RD, Sexton R, MacFarlane JK. Rectal cancer: the Basingstoke experience of total mesorectal excision, 1978–1997. Arch Surg. 1998;133(8):894–9.

    Article  CAS  PubMed  Google Scholar 

  34. deSouza AL, Prasad LM, Ricci J, Park JJ, Marecik SJ, Zimmern A, et al. A comparison of open and robotic total mesorectal excision for rectal adenocarcinoma. Dis Colon Rectum. 2011;54(3):275–82.

    Article  PubMed  Google Scholar 

  35. Baek JH, McKenzie S, Garcia-Aguilar J, Pigazzi A. Oncologic outcomes of robotic-assisted total mesorectal excision for the treatment of rectal cancer. Ann Surg. 2010;251(5):882–6.

    Article  PubMed  Google Scholar 

  36. Hara M, Sng K, Yoo BE, Shin JW, Lee DW, Kim SH. Robotic-assisted surgery for rectal adenocarcinoma: short-term and midterm outcomes from 200 consecutive cases at a single institution. Dis Colon Rectum. 2014;57(5):570–7.

    Article  PubMed  Google Scholar 

  37. Saklani AP, Lim DR, Hur H, Min BS, Baik SH, Lee KY, et al. Robotic versus laparoscopic surgery for mid-low rectal cancer after neoadjuvant chemoradiation therapy: comparison of oncologic outcomes. Int J Colorectal Dis. 2013;28(12):1689–98.

    Article  PubMed  Google Scholar 

  38. Xiong B, Ma L, Zhang C, Cheng Y. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis. J Surg Res. 2014;188(2):404–14.

    Article  PubMed  Google Scholar 

  39. Kim JY, Kim NK, Lee KY, Hur H, Min BS, Kim JH. A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. Ann Surg Oncol. 2012;19(8):2485–93.

    Article  PubMed  Google Scholar 

  40. Luca F, Valvo M, Ghezzi TL, Zuccaro M, Cenciarelli S, Trovato C, et al. Impact of robotic surgery on sexual and urinary functions after fully robotic nerve-sparing total mesorectal excision for rectal cancer. Ann Surg. 2013;257(4):672–8.

    Article  PubMed  Google Scholar 

  41. D’Annibale A, Pernazza G, Monsellato I, Pende V, Lucandri G, Mazzocchi P, et al. Total mesorectal excision: a comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg Endosc. 2013;27(6):1887–95.

    Article  PubMed  Google Scholar 

  42. Byrn JC, Hrabe JE, Charlton ME. An initial experience with 85 consecutive robotic-assisted rectal dissections: improved operating times and lower costs with experience. Surg Endosc. 2014;28(11):3101–7.

    Article  PubMed  Google Scholar 

  43. Ostrowitz MB, Eschete D, Zemon H, DeNoto G. Robotic-assisted single-incision right colectomy: early experience. Int J Med Robot. 2009;5(4):465–70.

    Article  PubMed  Google Scholar 

  44. ACOG Committee Opinion No. 444: choosing the route of hysterectomy for benign disease. Obstet Gynecol. 2009;14(5):1156–1158.

    Google Scholar 

  45. Rosero EB, Kho KA, Joshi GP, Giesecke M, Schaffer JI. Comparison of robotic and laparoscopic hysterectomy for benign gynecologic disease. Obstet Gynecol. 2013;122(4):778–86.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Liu H, Lu D, Wang L, Shi G, Song H, Clarke J. Robotic surgery for benign gynaecological disease. Cochrane Database Syst Rev. 2012;2, CD008978.

    PubMed  Google Scholar 

  47. Wright JD, Ananth CV, Lewin SN, Burke WM, Lu YS, Neugut AI, et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA. 2013;309(7):689–98.

    Article  CAS  PubMed  Google Scholar 

  48. Weinberg L, Rao S, Escobar PF. Robotic surgery in gynecology: an updated systematic review. Obstet Gynecol Int. 2011;2011:852061.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Gaia G, Holloway RW, Santoro L, Ahmad S, Di Silverio E, Spinillo A. Robotic-assisted hysterectomy for endometrial cancer compared with traditional laparoscopic and laparotomy approaches: a systematic review. Obstet Gynecol. 2010;116(6):1422–31.

    Article  PubMed  Google Scholar 

  50. Backes FJ, Brudie LA, Farrell MR, Ahmad S, Finkler NJ, Bigsby GE, et al. Short- and long-term morbidity and outcomes after robotic surgery for comprehensive endometrial cancer staging. Gynecol Oncol. 2012;125(3):546–51.

    Article  PubMed  Google Scholar 

  51. Cardenas-Goicoechea J, Shepherd A, Momeni M, Mandeli J, Chuang L, Gretz H, et al. Survival analysis of robotic versus traditional laparoscopic surgical staging for endometrial cancer. Am J Obstet Gynecol. 2014;210(2):160.e1–e11.

    Article  Google Scholar 

  52. Jayaraman S, Davies W, Schlachta CM. Getting started with robotics in general surgery with cholecystectomy: the Canadian experience. Can J Surg. 2009;52(5):374–8.

    PubMed Central  PubMed  Google Scholar 

  53. Salman M, Bell T, Martin J, Bhuva K, Grim R, Ahuja V. Use, cost, complications, and mortality of robotic versus nonrobotic general surgery procedures based on a nationwide database. Am Surg. 2013;79(6):553–60.

    PubMed  Google Scholar 

  54. Vidovszky TJ, Carr AD, Farinholt GN, Ho HS, Smith WH, Ali MR. Single-site robotic cholecystectomy in a broadly inclusive patient population: a prospective study. Ann Surg. 2014;260(1):134–41.

    Article  PubMed  Google Scholar 

  55. Konstantinidis KM, Hirides P, Hirides S, Chrysocheris P, Georgiou M. Cholecystectomy using a novel Single-Site(®) robotic platform: early experience from 45 consecutive cases. Surg Endosc. 2012;26(9):2687–94.

    Article  PubMed  Google Scholar 

  56. Fourman MM, Saber AA. Robotic bariatric surgery: a systematic review. Surg Obes Relat Dis. 2012;8(4):483–8.

    Article  PubMed  Google Scholar 

  57. Owen B, Simorov A, Siref A, Shostrom V, Oleynikov D. How does robotic anti-reflux surgery compare with traditional open and laparoscopic techniques: a cost and outcomes analysis. Surg Endosc. 2014;28(5):1686–90.

    Article  PubMed  Google Scholar 

  58. Muller-Stich BP, Reiter MA, Wente MN, Bintintan VV, Koninger J, Buchler MW, et al. Robot-assisted versus conventional laparoscopic fundoplication: short-term outcome of a pilot randomized controlled trial. Surg Endosc. 2007;21(10):1800–5.

    Article  CAS  PubMed  Google Scholar 

  59. Boggi U, Caniglia F, Amorese G. Laparoscopic robot-assisted major hepatectomy. J Hepatobiliary Pancreat Sci. 2014;21(1):3–10.

    Article  PubMed  Google Scholar 

  60. Tsung A, Geller DA, Sukato DC, Sabbaghian S, Tohme S, Steel J, et al. Robotic versus laparoscopic hepatectomy: a matched comparison. Ann Surg. 2014;259(3):549–55.

    Article  PubMed  Google Scholar 

  61. Lai EC, Yang GP, Tang CN. Robot-assisted laparoscopic liver resection for hepatocellular carcinoma: short-term outcome. Am J Surg. 2013;205(6):697–702.

    Article  PubMed  Google Scholar 

  62. Orti-Rodriguez RJ, Rahman SH. A comparative review between laparoscopic and robotic pancreaticoduodenectomies. Surg Laparosc Endosc Percutan Tech. 2014;24(2):103–8.

    Article  PubMed  Google Scholar 

  63. Zhang J, Wu WM, You L, Zhao YP. Robotic versus open pancreatectomy: a systematic review and meta-analysis. Ann Surg Oncol. 2013;20(6):1774–80.

    Article  PubMed  Google Scholar 

  64. Park JY, Kim YW, Ryu KW, Eom BW, Yoon HM, Reim D. Emerging role of robot-assisted gastrectomy: analysis of consecutive 200 cases. J Gastric Cancer. 2013;13(4):255–62.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Vasilescu C, Stanciulea O, Tudor S. Laparoscopic versus robotic subtotal splenectomy in hereditary spherocytosis. Potential advantages and limits of an expensive approach. Surg Endosc. 2012;26(10):2802–9.

    Article  PubMed  Google Scholar 

  66. Sun GH, Peress L, Pynnonen MA. Systematic review and meta-analysis of robotic vs conventional thyroidectomy approaches for thyroid disease. Otolaryngol Head Neck Surg. 2014;150(4):520–32.

    Article  PubMed  Google Scholar 

  67. Abdelgadir Adam M, Speicher P, Pura J, Dinan MA, Reed SD, Roman SA, et al. Robotic thyroidectomy for cancer in the US: patterns of Use and short-term outcomes. Ann Surg Oncol. 2014;21(12):3859–64.

    Article  Google Scholar 

  68. O’Malley Jr BW, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116(8):1465–72.

    Article  PubMed  Google Scholar 

  69. Hans S, Delas B, Gorphe P, Menard M, Brasnu D. Transoral robotic surgery in head and neck cancer. Eur Ann Otorhinolaryngol Head Neck Dis. 2012;129(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  70. Van Abel KM, Moore EJ. The rise of transoral robotic surgery in the head and neck: emerging applications. Expert Rev Anticancer Ther. 2012;12(3):373–80.

    Article  PubMed  Google Scholar 

  71. Wortman TD, Mondry JM, Farritor SM, Oleynikov D. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans Biomed Eng. 2013;60(4):926–9.

    Article  PubMed  Google Scholar 

  72. Gordon ZN, Angell J, Abaza R. Completely intracorporeal robotic renal autotransplantation. J Urol. 2014;192(5):1516–22.

    Article  PubMed  Google Scholar 

  73. Hompes R, Rauh SM, Ris F, Tuynman JB, Mortensen NJ. Robotic transanal minimally invasive surgery for local excision of rectal neoplasms. Br J Surg. 2014;101(5):578–81.

    Article  CAS  PubMed  Google Scholar 

  74. Bardakcioglu O. Robotic transanal access surgery. Surg Endosc. 2013;27(4):1407–9.

    Article  PubMed  Google Scholar 

  75. Gomez Ruiz M, Palazuelos CM, Martin Parra JI, Alonso Martin J, Cagigas Fernandez C, del Castillo DJ, et al. New technique of transanal proctectomy with completely robotic total mesorrectal excision for rectal cancer. Cir Esp. 2014;92(5):356–61.

    Article  PubMed  Google Scholar 

  76. Zygomalas A, Kehagias I, Giokas K, Koutsouris D. Miniature surgical robots in the Era of NOTES and LESS: dream or reality? Surg Innov. 2015;22(1):97–107.

    Article  PubMed  Google Scholar 

  77. Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci. 2013;54(4):2853–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua I. S. Bleier M.D., F.A.C.S., F.A.S.C.R.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bleier, J.I.S., Kann, B.R. (2015). History of the Robotic Surgical System. In: Ross, H., Lee, S., Champagne, B., Pigazzi, A., Rivadeneira, D. (eds) Robotic Approaches to Colorectal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-09120-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09120-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09119-8

  • Online ISBN: 978-3-319-09120-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics