Skip to main content

Case Study 2: Phenological Trends in the Federal State of Hesse

  • Chapter
  • First Online:
Plant Phenology as a Biomonitor for Climate Change in Germany

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 532 Accesses

Abstract

In Hesse, a rise in air temperature of about 0.9 °C in average established comparing the climate reference period 1961–1990 and the period 1991–2009. This equals the trend in entire Germany, whilst in some regions even a temperature increase of up to 3 °C was measured. Until the end of the twenty-first century, air temperatures in Hesse are expected to rise between 3.2 and 3.7 °C compared to the reference period 1971–2000. This should also affect the onset and duration of phenological stages of plants implicating serious impacts for environment and economy. In order to deal with this issue, the research project “HeKlimPh” funded by the Hessian Competence Centre of Climate Change modelled spatiotemporal trends of plant phenology as being an indicator for climate change related biological effects. Accordingly, case study 2 describes the coupled analysis of meteorological air temperature data and phenological data indicating different phenological seasons. The data comprise observations on 35 plant phenological phases of wild growing plants, fruits, crops and vines collected at about 6500 observation sites in Germany (553 in Hesse) between 1961–2005. Within a GIS environment, also estimations on the future phenological development for the periods 2031–2060 and 2071–2100 were performed. The projections were based on air temperature grids derived from four regional climate models considering the IPCC emission scenario A1B.

The statistical association between air temperatures and onset of phenological phases for the past periods 1961–1990, 1971–2000, and 1991–2009 was investigated by means of correlation analysis, considering auto-correlation, and regression analysis. For plant phases showing a significant and at least medium (|r| ≥ 0.5) correlation between phase onset and air temperatures, phenological development was assessed by applying Regression Kriging. Future projections based on the regression models derived for the climate reference period 1971–2000. For each of the respective plant phases the according regression function was applied to air temperature grids depicting the estimated thermal development in the climate periods 2031–2060 and 2071–2100.

The calculations revealed that 31 out of 35 phases started earlier in the years 1991–2009 compared with 1961–1990. These shifts were more pronounced in Hesse (8 days) compared to the development in Germany (6 days). The onset of several plant phases was even more than 10 days earlier comparing the recent climate period and the prior one. Contrarily, plant phases indicating autumn and winter seasons tend to shift towards the end of the year yielding a prolongation of the vegetation period of up to 3 weeks. More than 70 % of the phases in each of the past periods were correlated with air temperatures by r ≤−0.5, more than 50 % even by r ≤ − 0.7. Projections gave reason to assume that the advances in phase onset to the beginning of the year should intensify in future: In many cases, shifts between 2071–2100 and 1961–1990 are expected to be at least twice as high as between 1991–2009 and 1961–1990.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://klimawandel.hlug.de

References

  • Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Change 11:151–158

    Article  Google Scholar 

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM-the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235

    Google Scholar 

  • Brown I (2012) Influence of seasonal weather and climate variability on crop yields in Scotland. Int J Biometeorol 57:605–614

    Article  Google Scholar 

  • Brown DG, Aspinall T, Bennett DA (2006) Landscape models and explanation in landscape ecology—a space for generative landscape science? Prof Geograph 58:369–382

    Article  Google Scholar 

  • Crimmins MA, Crimmins TM (2008) Monitoring plant phenology using digital repeat photography. Environ Manage 41:949–958

    Article  Google Scholar 

  • Dale MRT, Fortin MJ (2009) Spatial autocorrelation and statistical tests: some solutions. J Agr Biol Environ Stat 14:188–206

    Article  Google Scholar 

  • Dutilleul P (1993) Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49:305–314

    Article  Google Scholar 

  • DWD (Deutscher Wetterdienst) (1991) Anleitung für die phänologischen Beobachter des Deutschen Wetterdienstes. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • DWD (Deutscher Wetterdienst) (2006) Phänologie-Journal. Mitteilungen für die phänologischen Beobachter des Deutschen Wetterdienstes 27. Offenbach

    Google Scholar 

  • Elith J, Leathwick J (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol 40:677–697

    Article  Google Scholar 

  • Enke W (2003) Anwendung eines Statistischen Regionalisierungsmodells auf das Szenario B2 des ECHAM4 OPYC3 Klima-Simulationslaufes bis 2050 zur Abschätzung Regionaler Klimaänderungen für das Bundesland Hessen. Hessisches Landesamt für Umwelt und Geologie, Wiesbaden

    Google Scholar 

  • Enke W (2004) Erweiterung des Simulationszeitraumes der Wetterlagenbasierten Regionalisierungsmethode auf der Basis des ECHAM4-OPYC3 Laufes für die Dekaden 2011/2020 und 2051/2100, Szenario B2. Hessisches Landesamt für Umwelt und Geologie, Wiesbaden

    Google Scholar 

  • Fortin JM, Payette S (2001) How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience 9:213–218

    Google Scholar 

  • Hagl S (2008) Schnelleinstieg Statistik: Daten Erheben, Analysieren, Präsentieren. Haufe-Lexware, München

    Google Scholar 

  • Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315

    Article  Google Scholar 

  • Henniges Y, Danzeisen H, Zimmermann RD (2005) Regionale Klimatrends mit Hilfe der phänologischen Uhr, dargestellt am Beispiel Rheinland-Pfalz. Umweltwiss Schadst Forsch 17(1):28–34

    Article  Google Scholar 

  • Holopainen J, Helama S, Lappalainen H, Gregow H (2013) Plant phenological records in northern Finland since the 18th century as retrieved from databases, archives and diaries for biometeorological research. Int J Biometeorol 57:423–435

    Article  Google Scholar 

  • Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2007) Climate change 2007. Synthesis report. Geneva, 52 p

    Google Scholar 

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland-Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Forschungsbericht 204 41 138, UBA-FB 000969. Clim Change 11:1862–4359. http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3513.pdf. Accessed 14 July 2014

  • Keuler K, Lautenschlager M (2006) Climate Simulations with CLM. Climate of the 20th Century run No. 1, 1960-2000, Data Stream 2 und Scenario A1B run No. 1, 2001-2100, European Region, MPI-M/MaD. Max-Planck Institut für Meteorologie, Hamburg. http://cera-www.dkrz.de/WDCC/ui/BrowseExperiments.jsp?proj=CLM_regional_climate_model_runs. Accessed 14 July 2014

  • Khanduri VP, Sharma CM, Singh SP (2008) The effects of climate change on plant phenology. Environmentalist 28:143–147

    Article  Google Scholar 

  • Kreienkamp F, Spekat A, Enke W (2010) Ergebnisse eines Regionalen Szenarienlaufs für Deutschland mit dem Statistischen Modell WETTREG2010. Report. CEC, Potsdam

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Li Z, Yang P, Tang H, Wu W, Yin H, Liu Z, Zhang L (2014) Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg Environ Change 14:39–48

    Article  Google Scholar 

  • Liang L, Schwartz MD (2013) Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants. Int J Biometeorol. http://link.springer.com/article/10.1007%2Fs00484-013-0691-6

  • Ma S, Churkina G, Trusilova K (2012) Investigating the impact of climate change on crop phenological events in Europe with a phenology model. Int J Biometeorol 56:749–763

    Article  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23(5):1080–1089

    Article  Google Scholar 

  • Meynen E, Schmithüsen J, Gellert J, Neef E, Müller-Miny H, Schultze JH (1953–1962) Handbuch der naturräumlichen Gliederung Deutschlands, 2 Bd. Bad Godesberg

    Google Scholar 

  • Milad M, Schaich H, Bürgi M, Konold W (2011) Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. Forest Ecol Manage 261:829–843

    Article  Google Scholar 

  • Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67:215–226

    Article  Google Scholar 

  • Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555

    Article  CAS  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872

    Article  Google Scholar 

  • Pesch R, Schröder W (2006) Assessment of metal accumulation in mosses by combining metadata, statistics and GIS. Nova Hedwigia 82(3–4):447–466

    Article  Google Scholar 

  • Priess JA, Heistermann M, Schaldach R, Onigkeit J, Mimler M, Trinks D, Alcamo J (2005) Klimawandel und Landwirtschaft in Hessen: Mögliche Auswirkungen des Klimawandels auf Landwirtschaftliche Erträge. Abschlussbericht für den Bereich Landwirtschaft, InKlim 2012-Integriertes Klimaschutzprogramm Baustein II: Klimawandel und Klimafolgen in Hessen. http://klimawandel.hlug.de/fileadmin/dokumente/klima/inklim/endberichte/landwirtschaft.pdf. Accessed April 2014

  • Romić MT, Hengl D, Romić D, Husnjak S (2007) Representing soil pollution by heavy metals using continuous limitation scores. Comput Geosci 33:1316–1326

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  Google Scholar 

  • Schnelle F (1955) Pflanzen-Phänologie. Geest & Portig, Leipzig

    Google Scholar 

  • Schönrock S, Schmidt G, Schröder W (2013) Klimabiomonitoring. Untersuchung der Pflanzenphänologie auf lokaler Ebene und ihr Vergleich mit regionalen und nationalen Daten. Natur Landschaft 88:14–21

    Google Scholar 

  • Schröder W (1996) Einsatz von Biosphärenreservaten für Integrative Umweltbeobachtung und -bewertung sowie Naturschutz. Beiträge der Akademie für Natur- und Umweltschutz Baden-Württemberg 23:143–167

    Google Scholar 

  • Schröder W, Vetter L, Fränzle O (eds) (1994) Neuere statistische Verfahren und Modellbildung in der Geoökologie. Vieweg, Braunschweig

    Book  Google Scholar 

  • Schultz H R, Hofmann M, Jones G (2009) Weinanbau im Klimawandel: Regionen im Umbruch. Klimastatusbericht des DWD, 12–20

    Google Scholar 

  • Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5:291–317

    Article  Google Scholar 

  • Stock M, Badeck F, Gerstengarbe F W, Hoppmann D, Kartschall T, Österle H, Werner P C, ­Wodninski M (2007) Perspektiven der Klimaänderung bis 2050 für den Weinbau in Deutschland (Klima 2050). Schlussbericht zum FDW-Vorhaben: Klima 2050. Potsdam Institute for Climate Impact Research (PIK). PIK report 106, Potsdam

    Google Scholar 

  • Streitfert A, Grünhage L, Jäger H-J (2005) Klimawandel und Pflanzenphänologie in Hessen. Institut für Pflanzenökologie, Justus-Liebig-Universität Giessen

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • van Vliet AJH, Bron WA, Mulder S, van der Slikke W, Ode B (2013) Observed climate-induced changes in plant phenology in the Netherlands. Reg Environ Change 14(3):997–1008. doi:10.1007/s10113-013-0493-8

    Google Scholar 

  • Zirlewagen D, Raben G, Weise M (2007) Zoning of forest health conditions based on a set of soil, topographic and vegetation parameters. Forest Ecol Manage 248:43–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Schmidt, G., Schönrock, S., Schröder, W. (2014). Case Study 2: Phenological Trends in the Federal State of Hesse. In: Plant Phenology as a Biomonitor for Climate Change in Germany. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-09090-0_3

Download citation

Publish with us

Policies and ethics