Skip to main content

High Performance Calculation of Magnetic Properties and Simulation of Nonequilibrium Phenomena in Nanofilms

  • Conference paper
  • First Online:
  • 769 Accesses

Abstract

Images of surface topography of ultrathin magnetic films have been used for Monte Carlo simulations in the frame of the ferromagnetic Ising model to study the hysteresis and thermal properties of nanomaterials. For high-performance calculations, a super-scalable parallel algorithm was used for finding the equilibrium configuration. The changing of the distribution of spins on the surface during the reversal of the magnetization and the dynamics of the nanodomain structure of thin magnetic films under the influence of a changing external magnetic field were investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gallagher, W., Parkin, S.: Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-mb MRAM demonstrator chip. IBM J. Res. Dev. 50(1), 5–23 (2006)

    Article  Google Scholar 

  2. Tehrani, S., Chen, E., Durlam, M., DeHerrera, M., Slaughter, J., Shi, J., Kerszykowski, G.: High density submicron magnetoresistive random access memory. J. Appl. Phys. 85(8), 5822–5827 (1999)

    Article  Google Scholar 

  3. Tehrani, S., Engel, B., Slaughter, J., Chen, E., DeHerrera, M., Durlam, M., Naji, P., Whig, R., Janesky, J., Calder, J.: Recent developments in magnetic tunnel junction MRAM. IEEE Trans. Magn. 36(5), 2752–2757 (2000)

    Article  Google Scholar 

  4. Melo, L., Rodrigues, L., Freitas, P.: Novel spin-valve memory architecture. IEEE Trans. Magn. 33(5), 3295–3297 (1997)

    Article  Google Scholar 

  5. Boeve, H., Bruynseraede, C., Das, J., Dessein, K., Borghs, G., De Boeck, J., Sousa, R., Melo, L., Freitas, P.: Technology assessment for the implementation of magnetoresistive elements with semiconductor components in magnetic random access memory (MRAM) architectures. IEEE Trans. Magn. 35(5), 2820–2825 (1999)

    Article  Google Scholar 

  6. Daughton, J.: GMR applications. J. Magn. Magn. Mater. 192(2), 334–342 (1999)

    Article  Google Scholar 

  7. Nefedev, K., Savunov, M., Belokon, V.: Finite interaction range spin glass in the Ising model. Phys. Solid State 48(9), 1746–1753 (2006)

    Article  Google Scholar 

  8. Belokon, V., Nefedev, K.: Distribution function for random interaction fields in disordered magnets: spin and macrospin glass. J. Exp. Theor. Phys. 93(1), 136–142 (2001)

    Article  Google Scholar 

  9. Nefedev, K., Belokon, V.: Magnetic phase transitions in amorphous systems with competing exchange interactions. Phys. Solid State 44(9), 1708–1710 (2002)

    Article  Google Scholar 

  10. Ivanov, Y., Nefedev, K., Iljin, A., Pustovalov, E., Chebotkevich, L.: Magnetization reversal of nanodots with different magnetic anisotropy and magnetostatic energy. J. Phys.: Conf. Ser. 266(1), 012117. IOP Publishing, 2011

    Google Scholar 

  11. Nefedev, K., Ivanov, Y., Peretyatko, A., Belokon, V.: Magnetic states of nanodot arrays. Physical and numerical experiments. Solid State Phenom. 168, 325–328 (2011)

    Google Scholar 

  12. Nefedev, K., Ivanov, Y., Peretyatko, A.: Parallel algorithm for calculation of the nanodot magnetization. In: Methods and Tools of Parallel Programming Multicomputers, pp. 260–267. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  13. Nefedev, K., Kapitan, V.: Spin-glass-like behavior and concentration phase transitions in model of monolayer two-sublattice magnetics. Appl. Mech. Mater. 328, 841–844 (2013)

    Article  Google Scholar 

  14. Nefedev, K., Kapitan, V., Shevchenko, Y.: The inverse task for magnetic force microscopy data. Appl. Mech. Mater. 328, 744–747 (2013)

    Article  Google Scholar 

  15. Rudnev, V., Ustinov, A., Lukiyanchuk, I., Kharitonskii, P., Frolov, A., Morozova, V., Tkachenko, I., Adigamova, M.: Magnetic properties of plasma electrolytic iron-containing oxide coatings on aluminum and simulation of demagnetizing process. Solid State Phenom. 168, 289–291 (2011)

    Google Scholar 

  16. Kharitonskii, P., Frolov, A., Rudnev, V., Ustinov, A., Lukiyanchuk, I., Morozova, V.: Magnetic properties of iron-containing coatings formed by plasma-electrolytic oxidation. Bull. Russ. Acad. Sci. Phys. 74(10), 1404–1406 (2010)

    Article  MATH  Google Scholar 

  17. Ivanov, Y., Ilin, A., Davydenko, A., Zotov, A.: Optimal Cu buffer layer thickness for growing epitaxial Co overlayers on Si (111) 7× 7. J. Appl. Phys. 110(8), 083505 (2011)

    Article  Google Scholar 

  18. Ivanov, Y., Nefedev, K., Ilin, A., Kapitan, V.: Ferromagnetism in epitaxial fcc Co films on Si (111) 7×7 with Cu buffer layer. Phys. Procedia 23, 128–131 (2012)

    Article  Google Scholar 

  19. Kovtanyuk, A., Botkin, N., Hoffmann, K.-H.: Numerical simulations of a coupled radiative–conductive heat transfer model using a modified Monte Carlo method. Int. J. Heat Mass Transf. 55(4), 649–654 (2012)

    Article  MATH  Google Scholar 

  20. Kovtanyuk, A., Prokhorov, I.: Tomography problem for the polarized-radiation transfer equation. J. Inverse Ill-Posed Probl. JIIP 14(6), 609–620 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovtanyuk, A., Nefedev, K., Prokhorov, I.: Advanced computing method for solving of the polarized-radiation transfer equation. In: Methods and Tools of Parallel Programming Multicomputers, pp. 268–276. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  22. Nefedev, K., Belokon, V., Kapitan, V., Dyachenko, O.: Monte Carlo simulation of lattice systems with RKKY interaction. J. Phys. Conf.: Ser. 490(1), 012163 (2014). IOP Publishing

    Google Scholar 

  23. Kovtanyuk, A., Prokhorov, I.: A boundary-value problem for the polarized-radiation transfer equation with Fresnel interface conditions for a layered medium. J. Comput. Appl. Math. 235(8), 2006–2014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Belokon, V., Kapitan, V., Dyachenko, O.: Concentration of magnetic transitions in dilute magnetic materials. J. Phys. Conf.: Ser. 490(1), 012165 (2014). IOP Publishing

    Google Scholar 

  25. Kovtanyuk, A., Prokhorov, I.: Numerical solution of the inverse problem for the polarized-radiation transfer equation. Numer. Anal. Appl. 1(1), 46–57 (2008)

    Article  MathSciNet  Google Scholar 

  26. Huang, F., Mankey, G., Willis, R.: Interfacial anisotropy and magnetic transition of cobalt films on Cu (111). J. Appl. Phys. 75(10), 6406–6408 (1994)

    Article  Google Scholar 

  27. Bayreuther, G.: Experiments on ferromagnetic surfaces and thin films. J. Magn. Magn. Mater. 38(3), 273–286 (1983)

    Article  Google Scholar 

  28. Mauri, D., Scholl, D., Siegmann, H., Kay, E.: Universal thermal stabilization of the magnetization in ultrathin ferromagnetic films. Phys. Rev. Lett. 62(16), 1900–1903 (1989)

    Article  Google Scholar 

  29. Kohlhepp, J., Elmers, H., Cordes, S., Gradmann, U.: Power laws of magnetization in ferromagnetic monolayers and the two-dimensional Ising model. Phys. Rev. B 45(21), 12 287–12 291 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Yu. Kapitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kapitan, V.Y., Nefedev, K.V. (2014). High Performance Calculation of Magnetic Properties and Simulation of Nonequilibrium Phenomena in Nanofilms. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-09063-4_8

Download citation

Publish with us

Policies and ethics