Skip to main content

The Contribution of Airborne LiDAR Data to the Assessment of Surface Faulting Hazard for Lifelines Crossing Active Faults: An Example from the Central Apennines, Italy

  • Conference paper
  • First Online:
Engineering Geology for Society and Territory - Volume 5

Abstract

In case of moderate to strong earthquakes (generally for M > 5.5), coseismic slip along a fault can reach directly the ground surface and produce surface faulting. Although scarcely considered in the Italian legislation, surface faulting hazard can have a relevant societal impact because it exposes to substantial risk urban areas and/or important infrastructures, facilities and critical lifelines that are settled or planned in coincidence of an active and capable fault trace. In this paper we present a case study from the area hit by the Mw 6.1 April 6, 2009 L’Aquila earthquake (Central Italy), where buildings and critical lifelines located across or near the coseismic surface ruptures suffered significant damage. High resolution (1 m) LiDAR topographic data contributed to the assessment of surface faulting hazard through a better imaging of the surface geometrical arrangement of the earthquake causative fault and through the analysis of the spatial relationships between active fault splays and critical lifelines and infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APAT (2006) Carta Geologica d’Italia, F. 359 L’Aquila, scale 1:50,000. APAT (Servizio Geologico d Italia) and Regione Abruzzo, S.EL.CA, Firenze

    Google Scholar 

  • Arrowsmith JR, Zielke O (2009) Tectonic geomorphology of the San Andreas Fault zone from high-resolution topography: an example from the Cholame segment. Geomorphology. doi:10.1016/j.geomorph.2009.01.002

    Google Scholar 

  • Bagnaia R, D’Epifanio A, Sylos Labini S (1992) Aquila and sub-aequan basins: an example of Quaternary evolution in central Apennines. Italy, Quat Nova II:187–209

    Google Scholar 

  • Blumetti AM, Guerrieri L, Vittori E (2013) The primary role of the Paganica-San Demetrio fault system in the seismic landscape of the Middle Aterno Valley basin (Central Apennines). Q Int 288:183–194. ISSN 1040-6182, http://dx.doi.org/10.1016/j.quaint.2012.04.040. Accessed 4 March 2013

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy). J Seismol 8(3):407–425

    Article  Google Scholar 

  • Boncio P, Galli P, Naso G, Pizzi A (2012) Zoning surface rupture hazard along normal faults: insight from the 2009 Mw 6.3 L’Aquila, Central Italy, earthquake and other global earthquakes. Bull Seismol Soc Am 102(3). doi:10.1785/0120100301

  • Brunori CA, Civico R, Cinti FR, Ventura G (2012) Characterization of active fault scarps from LiDAR data: a case study from Central Apennines (Italy). Int J Geograph Inf Sci iFirst 2012:1–12. doi:10.1080/13658816.2012.684385

    Google Scholar 

  • Civico R (2012) Integrating new and traditional approaches for the estimate of slip-rates of active faults: examples from the Mw 6.3, 2009 L’Aquila earthquake area, Central Italy. PhD thesis, Alma Mater Studiorum—Università di Bologna. http://www.earth-prints.org/handle/2122/8478

  • Cunningham D, Grebby S, Tansey K, Gosar A, Kastelic V (2006) Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia. Geophys Res Lett 33:L20308. doi:10.1029/2006GL027014

    Article  Google Scholar 

  • Eurocode 8 (2003) Design of structures for earthquake resistance: Foundations, retaining structures and geotechnical aspects, European Committee for Standardization (CEN), Brussels. http://www.cen.eu/cenorm/homepage.htm

  • Galadini F, Meletti C, Vittori E (2001) Major active faults in Italy: available surficial data. Neth J Geosci 80:273–296

    Google Scholar 

  • Galli P, Galadini F, Pantosti D (2008) Twenty years of paleoseismology in Italy. Earth Sci Rev 88:89–117

    Article  Google Scholar 

  • Giaccio B, Galli P, Messina P, Peronace E, Scardia G, Sottili G, Sposato A, Chiarini E, Jicha B, Silvestri S (2012) Fault and basin depocentre migration over the last 2 Ma in the L’Aquila 2009 earthquake region, central Italian Apennines. Quat Sci Rev 56:69–88. ISSN 0277-3791 10.1016/j.quascirev.2012.08.016

  • Gori S, Falcucci E, Atzori S, Chini M, Moro M, Serpelloni E, Fubelli G, Saroli M, Devoti R, Stramondo S, Galadini F, Salvi S (2012) Constraining primary surface rupture length along the Paganica fault (L’Aquila earthquake) with geological and geodetic (DInSAR and GPS) evidence. Ital J Geosci (Boll Soc Geol It) 131(3). doi:10.3301/IJG.2012.21

  • Guerrieri L, Baer G, Hamiel Y, Amit R, Blumetti AM, Comerci V, Di Manna P, Michetti AM, Salamon A, Mushkin A, Sileo G, Vittori E (2010) InSAR data as a field guide for mapping minor earthquake surface ruptures: Ground displacements along the Paganica Fault during the 6 April 2009 L’Aquila earthquake. J Geophys Res 115:B12331. doi:10.1029/2010JB007579

    Article  Google Scholar 

  • Haeussler PJ, Schwartz DP, Dawson TE, Stenner HD, Lienkaemper JJ, Sherrod B, Cinti FR, Montone P, Craw PA, Crone AJ, Personius SF (2004) Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 Earthquake, Alaska. Bull Seismol Soc Am 94(6B):23–52

    Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless J, Weaver CS, Sherrod BL (2003) High-resolution lidar topography of the Puget Lowland, Washington—A bonanza for earth science. GSA Today 13(6):4–10

    Article  Google Scholar 

  • IAEA (ed) (2010) Seismic hazards in site evaluation for nuclear installations—Specific Safety Guide—IAEA Safety Standards Series SSG-9

    Google Scholar 

  • ISPRA ITHACA (ITaly HAzard from CApable faults) database (2000) http://sgi1.isprambiente.it/geoportal/catalog/content/project/ithaca.page

  • Vezzani L, Ghisetti F (1998) Carta Geologica dell’Abruzzo, 1:100,000. S.EL.CA, Firenze

    Google Scholar 

Download references

Acknowledgements

The airborne LiDAR survey performed by the Civil Protection of Friuli Venezia Giulia (Italy) was kindly released by Italian Civil Protection Department. We are grateful to the Gran Sasso Acqua S.p.A. for providing the data of the water pipelines network. This work has been financially supported by the project “FIRB Abruzzo”. The views and conclusions contained in this study are those of the authors and are purely scientific, and they should not be interpreted as necessarily representing official policies, either expressed or implied, of the Istituto Nazionale di Geofisica e Vulcanologia (INGV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Civico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Civico, R., Pantosti, D., Pucci, S., De Martini, P.M. (2015). The Contribution of Airborne LiDAR Data to the Assessment of Surface Faulting Hazard for Lifelines Crossing Active Faults: An Example from the Central Apennines, Italy. In: Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F. (eds) Engineering Geology for Society and Territory - Volume 5. Springer, Cham. https://doi.org/10.1007/978-3-319-09048-1_193

Download citation

Publish with us

Policies and ethics