Accuracy of the Finite Element Method

  • Tarek I. ZohdiEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


As we have seen in the one-dimensional analysis, the essential idea in the finite element method is to select a finite dimensional subspatial approximation of the true solution and form the following weak boundary problem


Finite Element Method Mesh Refinement Recovery Method Finite Element Solution Residual Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ainsworth, M., & Oden, J. T. (2000). A posteriori error estimation in finite element analysis. New York: Wiley.CrossRefzbMATHGoogle Scholar
  2. 2.
    Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Englewood-Cliffs: Prentice Hall.Google Scholar
  3. 3.
    Carey, G. F., & Oden, J. T. (1983). Finite elements: A second course. Englewood-Cliffs: Prentice Hall.zbMATHGoogle Scholar
  4. 4.
    Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Englewood-Cliffs: Prentice Hall.Google Scholar
  5. 5.
    Hughes, T. J. R. (1989). The finite element method. Englewood-Cliffs: Prentice Hall.Google Scholar
  6. 6.
    Szabo, B., & Babúska, I. (1991). Finite element analysis. New York: Wiley Interscience.zbMATHGoogle Scholar
  7. 7.
    Bathe, K. J. (1996). Finite element procedures. Englewood-Cliffs: Prentice Hall.Google Scholar
  8. 8.
    Oden, J. T., & Demkowicz, L. F. (2010). Applied functional analysis. Boca Raton: CRC Press.zbMATHGoogle Scholar
  9. 9.
    Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 24, 337–357.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Babúska, I., & Rheinbolt, W. C. (1978). A posteriori error estimates for the finite element method. The International Journal for Numerical Methods in Engineering, 12, 1597–1615.CrossRefzbMATHGoogle Scholar
  11. 11.
    Babúska, I., & Miller, A. D. (1987). A feedback finite element method with a-posteriori error estimation. Part I. Computer Methods in Applied Mechanics and Engineering, 61, 1–40.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kelly, D. W., Gago, J. R., Zienkiewicz, O. C., & Babúska, I. (1983). A posteriori error analysis and adaptive processes in the finite element. Part I-error analysis. International Journal for Numerical Methods in Engineering, 19, 1593–1619.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations