Advertisement

Accuracy of the Finite Element Method

  • Tarek I. ZohdiEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

As we have seen, the essential idea in the finite element method is to select a finite dimensional subspatial approximation of the true solution and form the following weak boundary problem

Keywords

Finite Element Method Mesh Fineness True Solution Mesh Refinement Minimum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ainsworth, M., & Oden, J. T. (2000). A posteriori error estimation in finite element analysis. New York: Wiley.CrossRefzbMATHGoogle Scholar
  2. 2.
    Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: An introduction. Upper Saddle River: Prentice Hall.Google Scholar
  3. 3.
    Carey, G. F., & Oden, J. T. (1983). Finite elements: A second course. Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  4. 4.
    Oden, J. T., & Carey, G. F. (1984). Finite elements: Mathematical aspects. Upper Saddle River: Prentice Hall.Google Scholar
  5. 5.
    Hughes, T. J. R. (1989). The finite element method. Upper Saddle River: Prentice Hall.Google Scholar
  6. 6.
    Szabo, B., & Babúska, I. (1991). Finite element analysis. Hoboken: Wiley Interscience.zbMATHGoogle Scholar
  7. 7.
    Bathe, K. J. (1996). Finite element procedures. Upper Saddle River: Prentice Hall.Google Scholar
  8. 8.
    Oden, J. T., & Demkowicz, L. F. (2010). Applied functional analysis. Boca Raton: CRC Press.zbMATHGoogle Scholar
  9. 9.
    Babúska, I., & Rheinbolt, W. C. (1978). A posteriori error estimates for the finite element method. The International Journal for Numerical Methods in Engineering, 12, 1597–1615.CrossRefzbMATHGoogle Scholar
  10. 10.
    Babúska, I., & Miller, A. D. (1987). A feedback finite element method with a-posteriori error estimation. Part I. Computer Methods in Applied Mechanics and Engineering, 61, 1–40.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kelly, D. W., Gago, J. R., Zienkiewicz, O. C., & Babùska, I. (1983). A posteriori error analysis and adaptive processes in the finite element method. Part I-error analysis. International Journal for Numerical Methods in Engineering, 19, 1593–1619.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations