Summary and Advanced Topics

  • Tarek I. ZohdiEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The finite element method is a huge field of study. This set of notes was designed to give students only a brief introduction to the fundamentals of the method.


Finite Element Method Parallel Processing Domain Decomposition Entire Domain Adaptive Mesh Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ainsworth, M., & Oden, J. T. (2000). A posteriori error estimation in finite element analysis. New York: John Wiley.CrossRefzbMATHGoogle Scholar
  2. 2.
    Becker, E. B., Carey, G. F., & Oden, J. T. (1980). Finite elements: an introduction. Englewood-Cliffs: Prentice Hall.Google Scholar
  3. 3.
    Carey, G. F., & Oden, J. T. (1983). Finite elements: a second course. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  4. 4.
    Oden, J. T., & Carey, G. F. (1984). Finite elements: mathematical aspects. Englewood Cliffs: Prentice Hall.Google Scholar
  5. 5.
    Hughes, T. J. R. (1989). The finite element method. Englewood Cliffs: Prentice Hall.Google Scholar
  6. 6.
    Szabo, B., & Babúska, I. (1991). Finite element analysis. New York: Wiley Interscience.zbMATHGoogle Scholar
  7. 7.
    Bathe, K. J. (1996). Finite element procedures. Englewood Cliffs: Prentice Hall.Google Scholar
  8. 8.
    Zienkiewicz, O. C., & Taylor, R. L. (1991). The finite element method, vols. I and II. London: McGraw-Hill.Google Scholar
  9. 9.
    Wriggers, P. (2008). Nonlinear finite element analysis. Berlin: Springer.Google Scholar
  10. 10.
    Le Tallec, P. (1994). Domain decomposition methods in computational mechanics. Computational Mechanics Advances., 1, 121–220.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Amdahl, G. (1967). The validity of a single processor approach to achieving large-scale computing capabilities. In Proceedings of AFIPS Spring Joint Computer Conference, pp. 483–485, Atlantic City. AFIPS Press.Google Scholar
  12. 12.
    Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the ACM., 31(5), 532–533.CrossRefGoogle Scholar
  13. 13.
    Papadrakakis, M. (1993). Solving large-scale problems in mechanics. New York: Wiley.zbMATHGoogle Scholar
  14. 14.
    Papadrakakis, M. (1997). Parallel solution methods in computational mechanics. Chichester: Wiley.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations