Advertisement

Danube Bend: Miocene Half-Caldera and Pleistocene Gorge

  • Dávid KarátsonEmail author
Chapter
Part of the World Geomorphological Landscapes book series (WGLC)

Abstract

The Danube Bend, a river curvature, called Visegrád Gorge in its deepest and narrowest part, is one of the most picturesque landscapes in Hungary. Its origin and relief evolution has been a long-standing problem in Hungarian earth sciences. A number of geomorphological theories have been put forward in explaining the valley with a U-shaped planform, which is incised in the surrounding Miocene volcanic mountains. In the past fifteen years, thanks to combined volcanological, geomorphological and geochronological studies, the landscape evolution of the river bend of 5 km diameter has been largely clarified. The present-day U-shaped loop is partly inherited from the horseshoe caldera morphology of Keserűs Hill volcano, a 15-Ma-old andesitic lava dome complex with an eroded central depression open to the north. The formation of the Danube Bend was initiated by river incision that started to remove post-volcanic sedimentary cover in middle or rather late Pleistocene times. These processes in turn were triggered by mountain uplift, climate changes, and drop of the remote erosion base level. The present curvature of the river was controlled by the exhumation of the horseshoe caldera as well as the surrounding resistant volcaniclastic rocks (Visegrád Castle Hill) and a hilltop lava dome (Szent Mihály Hill). Moreover, a previous meander may have also inherited. The accelerated Late Quaternary erosion and intense dissection has resulted in a “re-birth” of the volcanic relief that exhibits again steep slopes. At present, exposed spectacular rock formations (e.g. Vadálló-kövek) tower above the gorge that belongs to the Danube-Ipoly National Park in Hungary.

Keywords

Fluvial gorge Miocene volcanism Horseshoe caldera Uplift Incision Danube 

References

  1. Bulla B (1941) A Magyar medence pliocén és pleisztocén terraszai (Pliocene and Pleistocene terraces of the Hungarian basin). Földrajzi Közlemények 69:199–230 (in Hungarian with German abstract)Google Scholar
  2. Csillag-Teplánszky E, Korpás L (1982) Magyarázó a Börzsöny-Dunazug hegység földtani térképeihez I-II (Memoir to the geological map of the Börzsöny and Visegrád Mountains) Manuscript. Geological Institute of Hungary, Budapest (in Hungarian with English abstract)Google Scholar
  3. Czakó T, Nagy B (1977) Fototektonikai és ércföldtani adatok korrelációja a Börzsöny hegységben (Correlation of phototectonic and ore geological data in the Börzsöny Mountains). Annual report of the Geological Institute of Hungary, Budapest, pp 47–60 (in Hungarian)Google Scholar
  4. Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary extension within the Alpine Orogene. Blackwell, London. Spec Publ Geol Soc 156:295–334Google Scholar
  5. Gábris G (1994) Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova 6:495–501CrossRefGoogle Scholar
  6. Georgievski G, Stanev EV (2006) Paleo-evolution of the Black Sea watershed: sea level and water transport through the Bosphorus Straits as an indicator of the Lateglacial-Holocene transition. Clim Dyn 26(6):631–644CrossRefGoogle Scholar
  7. Hably L, Kvacek Z (1998) Pliocene mesophytic forests surrounding crater lakes in western Hungary. Rev Palaeobot Palynol 101(1–4):257–269CrossRefGoogle Scholar
  8. Horváth F (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Petrol Geol 12(8):837–844CrossRefGoogle Scholar
  9. Horváth F, Royden L (1981) Mechanism for the formation of the Intra-Carpathian Basins: a review. Earth Evol Sci 3:307–316Google Scholar
  10. Jámbor Á (1980) Pannonian in the Transdanubian Central Mountains. Ann Geol Inst Hung 62:1–259Google Scholar
  11. Kádár L (1955) A folyókanyarulatok elmélete és a hegységek áttörésében való szerepe (The concept of river meandering and its role in cutting through mountains). Dunántúli Tudományos Gyűjtemény, Pécs, pp 3–18 (in Hungarian) Google Scholar
  12. Karátson D, Márton E, Harangi S, Józsa S, Balogh K, Pécskay Z, Kovácsvölgyi S, Szakmány Gy, Dulai A (2000) Volcanic evolution and stratigraphy of the Miocene Börzsöny Mountains, Hungary: an integrated study. Geologica Carpathica 51(1):325–343Google Scholar
  13. Karátson D, Németh K, Székely B, Ruszkiczay-Rüdiger Zs, Pécskay Z (2006) Incision of a river curvature due to exhumed Miocene volcanic landforms: Danube Bend, Hungary. Int J Earth Sci 95(5):929–944Google Scholar
  14. Karátson D, Oláh I, Pécskay Z, Márton E, Harangi Sz, Dulai A, Zelenka T, Kósik Sz (2007a) Miocene volcanism in the Visegrád Mountains, Hungary: an integrated approach to regional stratigraphy. Geologica Carpathica 58(6):541–563Google Scholar
  15. Karátson D, Ruszkiczay-Rüdiger Zs, Székely B (2007b) Miért kanyar alakú? A Dunakanyar kialakulása az évmilliós vulkáni formák és az évszázezredes folyóvízi erózió tükrében tükrében (Why bending? Origin of the Danube Bend in the light of million-year old volcanic features and hundred-thousand-year old fluvial erosion). Földrajzi Közlemények 121(4):289–302 (in Hungarian with English abstract)Google Scholar
  16. Kázmér M (1990) Birth, life and death of the Pannonian Lake. Palaeogeogr Palaeoclimatol Palaeoecol 79(1–2):171–188CrossRefGoogle Scholar
  17. Kéz A (1933) A Duna visegrádi áttörése (Appearance of the Danube river in the Visegrád Gorge). Mathematikai és Természettudományi Értesítő, Budapest 50:714–747 (in Hungarian)Google Scholar
  18. Kordos L (1979) A magyarországi paleoklimatológiai kutatások módszerei és eredményei (Methods and results of paleoclimatological research in Hungary). Official publications of the Hungarian Meteorological Institute, Budapest 50. 167 pGoogle Scholar
  19. Korpás L (ed) (1998) Magyarázó a Börzsöny és a Visegrádi-hegység földtani térképéhez (Explanations to the geological map of the Börzsöny and Visegrád Mountains). Geological Institute of Hungary, Budapest, 216 p (in Hungarian with English abstract)Google Scholar
  20. Kretzoi M, Pécsi M (1982) Pliocene and Quaternary chronostratigraphy and continental surface development of the Pannonian Basin. In: Pécsi M (ed) Quaternary studies in Hungary. INQUA, Geogr Inst Hung, Budapest, pp 11–42Google Scholar
  21. Láng S (1955) A Mátra és a Börzsöny természetföldrajza (Physical geography of the Mátra and Börzsöny Mountains). Akadémiai Kiadó, Budapest, 512 p (in Hungarian)Google Scholar
  22. Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167CrossRefGoogle Scholar
  23. Magyar I, Radivojević D, Sztanó O, Synak R, Ujszászi K, Pócsik M (2013) Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global Planet Change 103:168–173CrossRefGoogle Scholar
  24. Noszky J (1935) Adatok a visegrádi Dunaszoros terraszképződményeinek geológiai ismeretéhez (Data for the geological knowledge on the terraces in the Visegrád Gorge of the Danube). Ann Rep Geol Inst Hung 1935:1523–1543 (in Hungarian)Google Scholar
  25. Novothny Á, Ruszkiczay-Rüdiger Zs, Thamó-Bozsó E, Frechen M, Csillag G (2011) Dating Danube terraces in Hungary with luminescence and cosmogenic 10Be exposure ages—preliminary results. EGU, Geophys Res Abstr 13 (Vienna, Austria)Google Scholar
  26. Pécsi M (1959) A magyarországi Duna-völgy kialakulása és felszínalaktana (Formation and geomorphology of the valley section of Danube river in Hungary). Akadémiai Kiadó, Budapest, 346 p (in Hungarian)Google Scholar
  27. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovács M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57(6):511–530Google Scholar
  28. Prinz Gy (1936) Magyarország tájrajza (Landscapes of Hungary). In: Prinz Gy, Cholnoky J, Teleki P, Bartucz (eds) Magyar föld, magyar faj, vol I, part 1. Királyi Magyar Egyetemi Nyomda, Budapest, 394 p (in Hungarian)Google Scholar
  29. Ruszkiczay-Rüdiger Zs, Fodor L, Bada G, Leél-Össy Sz, Horváth E, Dunai TJ (2005) Quantification of Quaternary vertical movements in the central Pannonian Basin: a review of chronologic data along the Danube River, Hungary. Tectonophysics 410(1–4):157–172Google Scholar
  30. Ruszkiczay-Rüdiger Zs, Braucher R, Novothny Á, Csillag G, Fodor L, Molnár G, Madarász B, ASTER Team (submitted) Tectonic and climatic forcing on terrace formation: constraints from cosmic ray produced 10 Be depth profiles and luminescence data. Danube River, Central Europe, Hungary. Quat Sci Rev (submitted)Google Scholar
  31. Salamon F (1878) Buda-Pest története (History of Buda-Pest). Buda-Pest, 155 pGoogle Scholar
  32. Schafarzik F (1918) A budapesti Duna paleohidrográfiája (Paleo-hydro- graphy of the Danube at Budapest). Földtani Közlöny 48:184–200Google Scholar
  33. Strömpl G (1915) A visegrádi-Dunaszoros és a Pesti-síkság fiatalabb kavicstelepei (The younger pebble formations of the Visegrád Danube Gorge and Pest Plain). Földtani Közlöny 43:328–331 (in Hungarian)Google Scholar
  34. Sümeghy J (1955) A magyarországi pleisztocén összefoglaló ismertetése (Summary of the Pleistocene in Hungary). Ann Rep Geol Inst 1953(2):395–403 (in Hungarian)Google Scholar
  35. Szabó J (1862) Egy continentális emelkedés és sülyedésről Európa délkeleti részén (On continental uplift and subsidence in southeastern Europe). Ann Hung Acad Sci 10(6):93 (in Hungarian)Google Scholar
  36. Szádeczky-Kardoss E (1938) Geologie der rumpfungarländischen kleinen Tiefebene. Sopron, 444 pGoogle Scholar
  37. Székely A (1997) Vulkánmorfológia (Volcanic geomorphology). ELTE Eötvös Kiadó, Budapest, 234 p (in Hungarian)Google Scholar
  38. Székely B, Molnár G, Timár G (2006) Tabula Hungariae (1528): errors in mapping or surface evolution rearranging the watercourses? EGU, Geophys Res Abstr 8:04854 (Vienna, Austria)Google Scholar
  39. Ziegler A, Dèzes P (2006) Crustal evolution of Western and Central Europe. Geol Soc London Memoirs 32:43–56CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Physical Geography, Institute of Earth Sciences and GeographyEötvös Loránd UniversityBudapestHungary

Personalised recommendations