Advertisement

Surrogate-Based and One-Shot Optimization Methods for PDE-Constrained Problems with an Application in Climate Models

  • Thomas Slawig
  • Malte Prieß
  • Claudia Kratzenstein
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 97)

Abstract

We discuss PDE-constrained optimization problems with iterative state solvers. As typical and challenging example, we present an application in climate research, namely a parameter optimization problem for a marine ecosystem model. Therein, a periodic state is obtained via a slowly convergent fixed-point type iteration. We recall the algorithm that results from a direct or black-box optimization of such kind of problems, and discuss ways to obtain derivative information to use in gradient-based methods. Then we describe two optimization approaches, the One-shot and the Surrogate-based Optimization method. Both methods aim to reduce the high computational effort caused by the slow state iteration. The idea of the One-shot approach is to construct a combined iteration for state, adjoint and parameters, thus avoiding expensive forward and reverse computations of a standard adjoint method. In the Surrogate-based Optimization method, the original model is replaced by a surrogate which is here based on a truncated iteration with fewer steps. We compare both approaches, provide implementation details for the presented application, and give some numerical results.

Keywords

Optimization Climate model Marine ecosystem model One-shot method Surrogate-based optimization 

Notes

Acknowledgements

The work was supported by DFG in the Cluster “Future Ocean” and the priority program 1253 “Optimization with Partial Differential Equations”, and by the EU in the FP7 project “CarboChange”.

References

  1. 1.
    Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52(1), 337–361 (2004)CrossRefGoogle Scholar
  2. 2.
    Christianson, B.: Reverse accumulation and implicit functions. Optim. Methods Softw. 9(4), 307–322 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. In: MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)CrossRefGoogle Scholar
  5. 5.
    Gauger, N., Griewank, A., Hamdi, A., Kratzenstein, C., Özkaya, E., Slawig, T.: Automated extension of fixed point PDE solvers for optimal design with bounded retardation. In: Leugering, G., Engel, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol. 160. Birkhäuser, Basel (2011)Google Scholar
  6. 6.
    Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of Fortran 77–95 programs. Proc. Appl. Math. Mech. 2(1), 54–57 (2003)CrossRefGoogle Scholar
  7. 7.
    Griewank, A.: Evaluating Derivatives Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics, vol. 19. SIAM, Philadelphia (2000)Google Scholar
  8. 8.
    Griewank, A., Hamdi, A.: Properties of an augmented Lagrangian for design optimization. Optim. Methods Softw. 25(4), 645–664 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Griewank, A., Hamdi, A.: Reduced quasi-Newton method for simultaneous design and optimization. Comput. Optim. Appl. Online 49, 521–548 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Griewank, A., Kressner, D.: Time-lag in derivative convergence for fixed point iterations. ARIMA Numéro spécial CARI’04, pp. 87–102 (2005)Google Scholar
  11. 11.
    Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)Google Scholar
  12. 12.
    Kaland, L., De Los Reyes, J.C., Gauger, N.: One shot methods in function space for pde-constrained optimal control problems. Optim. Methods Softw. 29(2), 376–405 (2013)CrossRefGoogle Scholar
  13. 13.
    Khatiwala, S., Visbeck, M., Cane, M.A.: Accelerated simulation of passive tracers in ocean circulation models. Ocean Model. 9(1), 51–69 (2005)CrossRefGoogle Scholar
  14. 14.
    Koziel, S., Bandler, J.W., Cheng, Q.S.: Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58(8), 2166–2174 (2010)CrossRefGoogle Scholar
  15. 15.
    Kratzenstein, C., Slawig, T.: Simultaneous model spin-up and parameter identification with the one-shot method in a climate model example. Int. J. Optim. Control Theory Appl. 3(2), 99–110 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kriest, I., Khatiwala, S., Oschlies, A.: Towards an assessment of simple global marine biogeochemical models of different complexity. Prog. Oceanogr. 86(3–4), 337–360 (2010)CrossRefGoogle Scholar
  17. 17.
    Leifsson, L., Koziel, S.: Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. J. Comput. Sci. 1(2), 98–106, 6 (2010)Google Scholar
  18. 18.
    Özkaya, E., Gauger, N.: Single-step one-shot aerodynamic shape optimization. Technical report (2008)Google Scholar
  19. 19.
    Parekh, P., Follows, M.J., Boyle, E.A.: Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19(2), GB2020 (2005)CrossRefGoogle Scholar
  20. 20.
    Prieß, M., Koziel, S., Slawig, T.: Surrogate-based optimization of climate model parameters using response correction. J. Comput. Sci. 2(4), 335–344, 12 (2011)Google Scholar
  21. 21.
    Prieß, M., Piwonski, J., Koziel, S., Oschlies, A., Slawig, T.: Accelerated parameter identification in a 3D marine biogeochemical model using surrogate-based optimization. Ocean Model. 68, 22–36 (2013)CrossRefGoogle Scholar
  22. 22.
    Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)CrossRefGoogle Scholar
  23. 23.
    Sarmiento, J.L., Gruber, N.: Ocean Biogeochemical Dynamics. Princeton University Press, Princeton (2006)Google Scholar
  24. 24.
    Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 17, 129–150 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Søndergaard, J.: Optimization using surrogate models - by the space mapping technique. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Slawig
    • 1
  • Malte Prieß
    • 1
  • Claudia Kratzenstein
    • 1
  1. 1.Department of Computer Science and KMS Centre for Interdisciplinary Marine ScienceChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations