Surrogate-Based and One-Shot Optimization Methods for PDE-Constrained Problems with an Application in Climate Models

  • Thomas Slawig
  • Malte Prieß
  • Claudia Kratzenstein
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 97)


We discuss PDE-constrained optimization problems with iterative state solvers. As typical and challenging example, we present an application in climate research, namely a parameter optimization problem for a marine ecosystem model. Therein, a periodic state is obtained via a slowly convergent fixed-point type iteration. We recall the algorithm that results from a direct or black-box optimization of such kind of problems, and discuss ways to obtain derivative information to use in gradient-based methods. Then we describe two optimization approaches, the One-shot and the Surrogate-based Optimization method. Both methods aim to reduce the high computational effort caused by the slow state iteration. The idea of the One-shot approach is to construct a combined iteration for state, adjoint and parameters, thus avoiding expensive forward and reverse computations of a standard adjoint method. In the Surrogate-based Optimization method, the original model is replaced by a surrogate which is here based on a truncated iteration with fewer steps. We compare both approaches, provide implementation details for the presented application, and give some numerical results.


Optimization Climate model Marine ecosystem model One-shot method Surrogate-based optimization 


  1. 1.
    Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52(1), 337–361 (2004)CrossRefGoogle Scholar
  2. 2.
    Christianson, B.: Reverse accumulation and implicit functions. Optim. Methods Softw. 9(4), 307–322 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. In: MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)CrossRefGoogle Scholar
  5. 5.
    Gauger, N., Griewank, A., Hamdi, A., Kratzenstein, C., Özkaya, E., Slawig, T.: Automated extension of fixed point PDE solvers for optimal design with bounded retardation. In: Leugering, G., Engel, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol. 160. Birkhäuser, Basel (2011)Google Scholar
  6. 6.
    Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of Fortran 77–95 programs. Proc. Appl. Math. Mech. 2(1), 54–57 (2003)CrossRefGoogle Scholar
  7. 7.
    Griewank, A.: Evaluating Derivatives Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics, vol. 19. SIAM, Philadelphia (2000)Google Scholar
  8. 8.
    Griewank, A., Hamdi, A.: Properties of an augmented Lagrangian for design optimization. Optim. Methods Softw. 25(4), 645–664 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Griewank, A., Hamdi, A.: Reduced quasi-Newton method for simultaneous design and optimization. Comput. Optim. Appl. Online 49, 521–548 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Griewank, A., Kressner, D.: Time-lag in derivative convergence for fixed point iterations. ARIMA Numéro spécial CARI’04, pp. 87–102 (2005)Google Scholar
  11. 11.
    Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)Google Scholar
  12. 12.
    Kaland, L., De Los Reyes, J.C., Gauger, N.: One shot methods in function space for pde-constrained optimal control problems. Optim. Methods Softw. 29(2), 376–405 (2013)CrossRefGoogle Scholar
  13. 13.
    Khatiwala, S., Visbeck, M., Cane, M.A.: Accelerated simulation of passive tracers in ocean circulation models. Ocean Model. 9(1), 51–69 (2005)CrossRefGoogle Scholar
  14. 14.
    Koziel, S., Bandler, J.W., Cheng, Q.S.: Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58(8), 2166–2174 (2010)CrossRefGoogle Scholar
  15. 15.
    Kratzenstein, C., Slawig, T.: Simultaneous model spin-up and parameter identification with the one-shot method in a climate model example. Int. J. Optim. Control Theory Appl. 3(2), 99–110 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kriest, I., Khatiwala, S., Oschlies, A.: Towards an assessment of simple global marine biogeochemical models of different complexity. Prog. Oceanogr. 86(3–4), 337–360 (2010)CrossRefGoogle Scholar
  17. 17.
    Leifsson, L., Koziel, S.: Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. J. Comput. Sci. 1(2), 98–106, 6 (2010)Google Scholar
  18. 18.
    Özkaya, E., Gauger, N.: Single-step one-shot aerodynamic shape optimization. Technical report (2008)Google Scholar
  19. 19.
    Parekh, P., Follows, M.J., Boyle, E.A.: Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19(2), GB2020 (2005)CrossRefGoogle Scholar
  20. 20.
    Prieß, M., Koziel, S., Slawig, T.: Surrogate-based optimization of climate model parameters using response correction. J. Comput. Sci. 2(4), 335–344, 12 (2011)Google Scholar
  21. 21.
    Prieß, M., Piwonski, J., Koziel, S., Oschlies, A., Slawig, T.: Accelerated parameter identification in a 3D marine biogeochemical model using surrogate-based optimization. Ocean Model. 68, 22–36 (2013)CrossRefGoogle Scholar
  22. 22.
    Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)CrossRefGoogle Scholar
  23. 23.
    Sarmiento, J.L., Gruber, N.: Ocean Biogeochemical Dynamics. Princeton University Press, Princeton (2006)Google Scholar
  24. 24.
    Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 17, 129–150 (2001)MATHCrossRefGoogle Scholar
  25. 25.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Søndergaard, J.: Optimization using surrogate models - by the space mapping technique. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Slawig
    • 1
  • Malte Prieß
    • 1
  • Claudia Kratzenstein
    • 1
  1. 1.Department of Computer Science and KMS Centre for Interdisciplinary Marine ScienceChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations