Skip to main content

A Coq Formalization of Finitely Presented Modules

  • Conference paper
Interactive Theorem Proving (ITP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8558))

Included in the following conference series:

Abstract

This paper presents a formalization of constructive module theory in the intuitionistic type theory of Coq. We build an abstraction layer on top of matrix encodings, in order to represent finitely presented modules, and obtain clean definitions with short proofs justifying that it forms an abelian category. The goal is to use it as a first step to get certified programs for computing topological invariants, like homology groups and Betti numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, B., Kapulkin, C., Shulman, M.: Univalent categories and the Rezk completion (2013), http://arxiv.org/abs/1303.0584 (preprint)

  2. Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. J. Algebra Appl. 10(2), 269–293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barakat, M., Robertz, D.: homalg – A Meta-Package for Homological Algebra. J. Algebra Appl. 7(3), 299–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13(2), 261–293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cano, G., Dénès, M.: Matrices à blocs et en forme canonique. JFLA - Journées Francophones des Langages Applicatifs (2013)

    Google Scholar 

  6. Cohen, C.: Pragmatic Quotient Types in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Coq development team: The Coq Proof Assistant Reference Manual, version 8.4. Tech. rep., Inria (2012)

    Google Scholar 

  8. Coquand, T., Mörtberg, A., Siles, V.: Coherent and strongly discrete rings in type theory. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 273–288. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Coquand, T., Spiwack, A.: Towards constructive homological algebra in type theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 40–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Decker, W., Lossen, C.: Computing in Algebraic Geometry: A Quick Start using SINGULAR. Springer (2006)

    Google Scholar 

  11. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq system. Tech. rep., Microsoft Research INRIA (2009)

    Google Scholar 

  13. Gonthier, G.: Point-Free, Set-Free Concrete Linear Algebra. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn (2007)

    Google Scholar 

  15. Hatcher, A.: Algebraic Topology, 1st edn. Cambridge University Press (2001), http://www.math.cornell.edu/~hatcher/AT/AT.pdf

  16. Hedberg, M.: A Coherence Theorem for Martin-Löf’s Type Theory. Journal of Functional Programming 8(4), 413–436 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards a certified computation of homology groups for digital images. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 49–57. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Heras, J., Coquand, T., Mörtberg, A., Siles, V.: Computing persistent homology within Coq/SSReflect. ACM Transactions on Computational Logic 14(4), 26 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kaplansky, I.: Elementary divisors and modules. Transactions of the American Mathematical Society 66, 464–491 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lombardi, H., Quitté, C.: Algèbre commutative, Méthodes constructives: Modules projectifs de type fini. Calvage et Mounet (2011)

    Google Scholar 

  21. Lorenzini, D.: Elementary divisor domains and bézout domains. Journal of Algebra 371(0), 609–619 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer (1988)

    Google Scholar 

  23. Poincaré, H.: Analysis situs. Journal de l’ École Polytechnique 1, 1–123 (1895)

    Google Scholar 

  24. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formalized Reasoning 2(1), 41–62 (2009)

    MATH  MathSciNet  Google Scholar 

  25. The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study (2013), http://homotopytypetheory.org/book/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cohen, C., Mörtberg, A. (2014). A Coq Formalization of Finitely Presented Modules. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08970-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08969-0

  • Online ISBN: 978-3-319-08970-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics