Skip to main content

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

  • 907 Accesses

Abstract

Intuitively, any estimation process can profit enormously from prior knowledge. Incorporating prior knowledge into the adaptive filtering problem is typically done by means of regularization. This chapter gives a systematic consideration for regularization strategies exploiting sparseness for the identification of acoustic room impulse responses specifically for multichannel systems. The main findings of this chapter have been presented in [1]. The high convergence rates achieved by the algorithm derived in this chapter build the motivation for the subsequent chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only in this chapter of the monograph, the loudspeakers are indexed by the letter \(p\in \{1 \ldots P\}\).

References

  1. Helwani K, Buchner H, Spors S (2012) Multichannel adaptive filtering with sparseness constraints. In: Proceedings IWAENC, pp 1–4

    Google Scholar 

  2. Huang Y, Benesty J, Chen J (2006) Acoustic MIMO signal processing. Signals and communication technology. Springer, New York

    Google Scholar 

  3. Benesty J, Morgan DR, Sondhi MM (1998) A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. IEEE Trans Speech Audio Process 6(2):156–165

    Article  Google Scholar 

  4. Herre J, Buchner H, Kellermann W (2007) Acoustic echo cancellation for surround sound using perceptually motivated convergence enhancement. In: Proceedings IEEE ICASSP, vol 1. pp I-17–I-20

    Google Scholar 

  5. Bishop C (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  6. Allen JB, Berkley DA (1979) Image method for efficiently simulating small-room acoustics. J Acoust Soc Am 65(4):943–950

    Article  Google Scholar 

  7. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  8. Vetterli M, Marziliano P, Blu T (2002) Sampling signals with finite rate of innovation. IEEE Trans Signal Process 50(6):1417–1428

    Article  MathSciNet  Google Scholar 

  9. Naylor PA, Cui J, Brookes M (2006) Adaptive algorithms for sparse echo cancellation. Appl Speech Audio Process 86(6):1182–1192

    MATH  Google Scholar 

  10. Loganathan P, Lin XS, Khong AWH, Naylor PA (2009) Frequency-domain adaptive multidelay algorithm with sparseness control for acoustic echo cancellation. In: Proceedings EUSIPCO

    Google Scholar 

  11. Buchner H, Benesty J, Kellermann W (2005) Generalized multichannel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. Signal Process 85(3):549–570

    Article  MATH  Google Scholar 

  12. Buchner H, Spors S, Kellermann W (2004) Wave-domain adaptive filtering: acoustic echo cancellation for full-duplex systems based on wave-field synthesis. In: Proceedings IEEE ICASSP, vol 4. pp iv-117–iv-120

    Google Scholar 

  13. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J Roy Stat Soc B: (Stat Methodol) 68(1):49–67

    Article  MATH  MathSciNet  Google Scholar 

  14. Benesty J, Gay SL (2002) An improved PNLMS algorithm. In: Proceedings IEEE ICASSP, 2:1881–1884

    Google Scholar 

  15. Benesty J, Paleologu C, Ciochină S (2010) Proportionate adaptive filters from a basis pursuit perspective. IEEE Signal Process Lett 17(12):985–988

    Article  Google Scholar 

  16. Golub GH, Van Loan CF (1996) Matrix computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  17. Helwani K, Buchner H, Spors S (2010) On the robust and efficient computation of the kalman gain for multichannel adaptive filtering with application to acoustic echo cancellation. In: Proceedings 44-th asilomar conference on signals, systems and computers, pp 988–992

    Google Scholar 

  18. Buchner H, Benesty J, Gansler T, Kellermann W (2006) Robust extended multidelay filter and double-talk detector for acoustic echo cancellation. IEEE Trans Audio Speech Lang Process 14(5):1633–1644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Helwani .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helwani, K. (2015). Spatio-Temporal Regularized Recursive Least Squares Algorithm. In: Adaptive Identification of Acoustic Multichannel Systems Using Sparse Representations. T-Labs Series in Telecommunication Services. Springer, Cham. https://doi.org/10.1007/978-3-319-08954-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08954-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08953-9

  • Online ISBN: 978-3-319-08954-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics