Skip to main content

Introduction

  • Chapter
  • First Online:
  • 911 Accesses

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

Abstract

In research and development there is an increased interest in array-based audio signal processing. A major challenge to fully exploit the potential of array processing in practical applications lies in the development of adaptive MIMO systems. The underlying signal processing problems that are approached by adaptive systems can be classified as forward and inverse problems. In this chapter, the massive multichannel acoustic echo cancellation problem is introduced as an example of the forward problems. Also a brief review of the state-of-the-art in the multichannel adaptive filtering is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haykin S (1991) Adaptive filter theory. Prentice Hall Inc, Upper Saddle River

    MATH  Google Scholar 

  2. Breining C, Dreiseitel P, Hänsler E, Mader A, Nitsch B, Puder H, Schertler T, Schmidt G, Tilp J (1999) Acoustic echo control: an application of very-high-order adaptive filters. Sig Process Mag, IEEE 16(4):42–69

    Article  Google Scholar 

  3. Hänsler E, Schmidt G (2004) Acoustic echo and noise control: a practical approach. Wiley, Hoboken

    Book  Google Scholar 

  4. Vary P, Martin R (2006) Digital speech transmission. Wiley, Chichester

    Book  Google Scholar 

  5. Benesty J, Huang Y, Chen J (2008) Speech and audio processing in adverse environments, Chapter wiener and adaptive filters. Springer, Berlin

    Google Scholar 

  6. Benesty J, Morgan DR, Sondhi MM (1998) A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. IEEE Trans Speech Audio Process 6(2):156–165

    Article  Google Scholar 

  7. Buchner H, Kellermann W (2001) Acoustic echo cancellation for two and more reproduction channels. In: Proceedings of IEEE International workshop on acoustic echo and noise control (IWAENC), Darmstadt, Germany, pp 99–102

    Google Scholar 

  8. Gänsler T, Benesty J (2000) International Journal of adaptive control and signal processing 14:565–586

    Google Scholar 

  9. Shimauchi S, Makino S (1995) Stereo projection echo canceller with true echo path estimation. In: Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP), pp 3059–3062

    Google Scholar 

  10. Sugiyama A, Joncour Y, Hirano A (2001) A stereo echo canceler with correct echo-path identification on an input-sliding technique. IEEE Trans Signal Process 49(11):2577–2587

    Article  Google Scholar 

  11. Snow WB (1955) IRE Trans Audio 3:42–53

    Google Scholar 

  12. Berkhout AJ (1988) J Audio Eng Soc 36:977–995

    Google Scholar 

  13. Start EW (1996) Application of curved arrays in wave field synthesis. In: 110th AES convention, copenhagen, Denmark, Audio engineering society (AES)

    Google Scholar 

  14. Vogel P (1993) Application of wave field synthesis in room acoustics. PhD thesis, Delft University of Technology

    Google Scholar 

  15. D de Vries (2009) Wave field synthesis. Audio Engineering Society, New york

    Google Scholar 

  16. Daniel J (2000) Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia. PhD thesis, Université Paris 6

    Google Scholar 

  17. Gerzon MA (1973) With-heigth sound reproduction. J Audio Eng Soc (JAES) 21:2–10

    Google Scholar 

  18. Daniel J, Nicol R, Moreau S (2003) Further investigations of high order ambisonics and wavefield synthesis for holophonic sound imaging. In: 114th AES convention, amsterdam, the netherlands, Audio engineering society (AES)

    Google Scholar 

  19. Williams EG (1999) Fourier acoustics: sound radiation and nearfield acoustical holography. Academic press, San Diego

    Google Scholar 

  20. Elko GW, Meyer J (2004) A scalable spherical microphone array for spatial sound capture. J Acoust Soc Am 116:2525–2525

    Google Scholar 

  21. Li Z, Duraiswami R (2007) Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans Audio Speech Lang Process 15(2):702–714

    Article  Google Scholar 

  22. Rafaely B (2005) Analysis and design of spherical microphone arrays. Speech Audio Process IEEE Trans 13(1):135–143

    Article  Google Scholar 

  23. Balmages I, Rafaely B (2007) Open-sphere designs for spherical microphone arrays. IEEE Trans Audio Speech Lang Process 15(2):727–732

    Article  Google Scholar 

  24. Li Z (2005) The capture and creation of 3D auditory scenes. PhD thesis, University of maryland

    Google Scholar 

  25. Abhayapala TD, Gupta A (2009) Alternatives to spherical microphone arrays: hybrid geometries. In: Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP), pp 81–84

    Google Scholar 

  26. Weisstein EW (2003) CRC encyclopedia of mathematics. Taylor & Francis, Bristol

    Google Scholar 

  27. Zotter F (2009) Sampling strategies for acoustic Holography/Holophony on the sphere. In: NAG-DAGA International conference on acoustics. Rotterdam, The Netherlands

    Google Scholar 

  28. Jones HM, Kennedy A, Abhayapala TD (2002) On dimensionality of multipath fields: Spatial extent and richness. In: Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP), vol 3, Orlando, USA, pp 2837–2840

    Google Scholar 

  29. Gilbert EN, Morgan SP (1955) Optimum design of directive antenna arrays subject to random variations. Bell Syst Tech J 34:637–663

    Article  Google Scholar 

  30. Meyer J, Elko G (2004) Spherical microphone arrays for 3D sound recording. In: Audio signal processing for next-generation multimedia communication systems. Kluwer academic publishers, Springer, pp 67–89

    Google Scholar 

  31. Bernschütz B, Pörschmann C, Spors S, Weinzierl S (2010) Entwurf und aufbau eines variablen sphärischen mikrofonarrays für forschungsanwendungen in raumakustik und virtual audio. In: German annual conference on acoustics (DAGA)

    Google Scholar 

  32. Zotter F (2009) Analysis and Synthesis of Sound-Radiation with Spherical Arrays. Doctoral thesis, University of music and performing arts, Graz, Austria

    Google Scholar 

  33. Helwani K, Buchner H, Spors S (2011) Calibration of microphone arrays with arbitrary geometries. In: German annual conference on acoustics (DAGA), DÃsseldorf, pp 313–314

    Google Scholar 

  34. Rettberg T, Helwani K, Spors S, Buchner H (2012) Practical aspects of the calibration of spherical microphone arrays. In: German annual conference on acoustics (DAGA), Darmstadt

    Google Scholar 

  35. Mazo JE (1979) On the independence theory of equalizer convergence. Bell Syst Tech J 58(5):963–993

    Article  MATH  MathSciNet  Google Scholar 

  36. Benesty J, Duhamel P (1991) Fast constant modulus adaptive algorithm. Radar Signal Process IEE Proc.-F 138:379–387

    Article  Google Scholar 

  37. Clark G, Parker S, Mitra S (1983) A unified approach to time- and frequency-domain realization of FIR adaptive digital filters. IEEE Trans Acoust Speech Signal Process 31(5):1073–1083

    Article  Google Scholar 

  38. Ferrara ER (1980) Fast implementation of the LMS adaptive filtering. IEEE Trans Acoust Speech Signal Process, ASSP 28:474–475

    Article  Google Scholar 

  39. Mansour D, Gray AH (1982) Unconstrained frequency-domain adaptive filter. IEEE Trans Acoust Speech Signal Process 30(5):726–734

    Article  MATH  Google Scholar 

  40. Prado J, Moulines E (1994) Frequency-domain adaptive filtering with applications to acoustic echo cancellation. Ann Télécommun 49:414–428

    MATH  Google Scholar 

  41. Soo JS, Pang KK (1990) Multidelay block frequency domain adaptive filter. IEEE Trans Acoust Speech Signal Process 38:373–376

    Article  Google Scholar 

  42. Benesty J, Gilloire A, Grenier Y (1999) A frequency-domain stereophonic acoustic echo canceler exploiting the coherence between the channels. J Acoust Soc Am 106:L30–L35

    Article  Google Scholar 

  43. Buchner H, Benesty J, Kellermann W (2005) Generalized multichannel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. Signal Process 85(3):549–570

    Article  MATH  Google Scholar 

  44. Buchner H, Spors S (2008) A general derivation of wave-domain adaptive filtering and application to acoustic echo cancellation. In: Asilomar conference on signals, systems, and computers, Pacific Grove, USA

    Google Scholar 

  45. Duttweiler DL (2000) Proportionate normalized least-mean-squares adaptation in echo cancelers. Speech Audio Process IEEE Trans 8(5):508–518

    Article  Google Scholar 

  46. Benesty J, Gay SL (2002) An improved PNLMS algorithm. Proc IEEE ICASSP 2:1881–1884

    Google Scholar 

  47. Enzner G, Vary P (2006) Frequency-domain adaptive kalman filter for acoustic echo control in hands-free telephones. Signal Process 86(6):1140–1156

    Article  MATH  Google Scholar 

  48. Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  49. Scharf LL (1991) Stat Signal Process. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  50. Simmer KU, Bitzer J, Marro C (2001) Post-filtering techniques. In: Brandstein MS, Ward DB (eds) Microphone arrays: signal processing techniques and applications. Springer, Berlin, pp 39–60

    Chapter  Google Scholar 

  51. Martin R, Altenhoner J (1995) Coupled adaptive filters for acoustic echo control and noise reduction. Proc IEEE ICASSP 5:3043–3043

    Google Scholar 

  52. Faller C, Tournery C (2005) Estimating the delay and coloration effect of the acoustic echo path for low complexity echo suppression. In: Proceedings of IWAENC, pp 1–4

    Google Scholar 

  53. Faller C, Tournery C (2006) Stereo acoustic echo control using a simplified echo path model. In: Proceedings of IWAENC, pp 1–4

    Google Scholar 

  54. Enzner G, Martin R, Vary P (2002) The tight relation between acoustic echo cancellation and residual echo suppression by postfiltering. In: 13. Konferenz Elektronische Sprachsignalverarbeitung

    Google Scholar 

  55. Morgan DR, Hall JL, Benesty J (2001) Investigation of several types of nonlinearities for use in stereo acoustic echo cancellation. IEEE Trans Speech Audio Process 9(5):686–696

    Article  Google Scholar 

  56. Gänsler T, Eneroth P (1998) Influence of audio coding on stereophonic acoustic echo cancellation. In: Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP), pp 3649–3652

    Google Scholar 

  57. Ali M (1998) Stereophonic acoustic echo cancellation system using time-varying all-pass filtering for signal decorrelation. In: Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP), Seattle, WA, USA, pp 3689–3692

    Google Scholar 

  58. Hoya T, Chambers JA, Naylor PA (1999) Low complexity of \(\epsilon \)-NLMS algorithms and subband structures for stereophonic acoustic echo cancellation. In: Proceedings of International workshop on acoustic echo and noise control (IWAENC), Pocono Manor, NJ, USA

    Google Scholar 

  59. Herre J, Buchner H, Kellermann W (2007) Acoustic echo cancellation for surround sound using perceptually motivated convergence enhancement. In: Proceedings of IEEE ICASSP, vol 1, p I-17-I-20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Helwani .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helwani, K. (2015). Introduction. In: Adaptive Identification of Acoustic Multichannel Systems Using Sparse Representations. T-Labs Series in Telecommunication Services. Springer, Cham. https://doi.org/10.1007/978-3-319-08954-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08954-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08953-9

  • Online ISBN: 978-3-319-08954-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics