Skip to main content

Role of Image and Cognitive Load in Anatomical Multimedia

  • Chapter
  • First Online:
Teaching Anatomy

Abstract

Visualizations are an important part of anatomical education and appear in all software on the market. Not all visualization methods are the methods utilized by educators can covertly and significantly impact student learning and stratify the class based on learner abilities that are not directly related to anatomical comprehension. Often, the proposed mechanism for good, bad, or ugly visualizations is on aesthetics, rather than the cognitive load imparted on the learner. The appropriate use of multimedia principles that include using pictures, images, and visualizations in general will positively influence student attention and learning. This chapter outlines components of multimedia learning as it pertains to the use of visualizations in lectures and in online scenarios. Illustrations and research demonstrating how cognitive load can be manipulated to a pedagogic advantage are presented. Approaches and suggestions on how educators might modify their current materials and practice using visualizations are proposed that will positively affect learning through cognitive load reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McLachlan JC, Bligh J, Bradley P, Searle J. Teaching anatomy without cadavers. Med Educ. 2004;38(4):418–24.

    Article  PubMed  Google Scholar 

  2. Drake RL. Anatomy education in a changing medical curriculum. Anat Rec. 1998;253(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  3. Drake RL, McBride JM, Lachman N, Pawlina W. Medical education in the anatomical sciences: the winds of change continue to blow. Anat Sci Educ. 2009;2(6):253–9.

    Article  PubMed  Google Scholar 

  4. Collins TJ, Given RL, Hulsebosch CE, Miller BT. Status of gross anatomy in the US and Canada: Dilemma for the 21st century. Clin Anat. 1994;7(5):275–96.

    Article  Google Scholar 

  5. Stull AT, Hegarty M, Mayer RE. Getting a handle on learning anatomy with interactive three-dimensional graphics. J Educ Psychol. 2009;101(4):803–16.

    Article  Google Scholar 

  6. Mathewson JH. Visual-spatial thinking: an aspect of science overlooked by educators. Sci Educ. 1999;83(1):33–54.

    Article  Google Scholar 

  7. Mayer RE. Instruction based on visualization. In: Mayer RE, Alexander PA, editors. Handbook of research on learning and instruction. New York, NY: Routledge; 2011. p. 427–45.

    Google Scholar 

  8. Mayer RE. Multimedia learning. New York, NY: Cambridge University Press; 2009.

    Book  Google Scholar 

  9. Attardi SM, Rogers KA. Design and implementation of an online systemic human anatomy course with laboratory. Anatomical Sciences Education. 2014: First Published June 11, 2014, DOI: 10.1002/ase.1465.

    Google Scholar 

  10. Trelease RB, Rosset A. Transforming clinical imaging data for virtual reality learning objects. Anat Sci Educ. 2008;1(2):50–5.

    Article  PubMed  Google Scholar 

  11. McLachlan JC, Patten D. Anatomy teaching: ghosts of the past, present and future. Med Educ. 2006;40(3):243–53.

    Article  PubMed  Google Scholar 

  12. Aziz MA, McKenzie JC, Wilson JS, Cowie RJ, Ayeni SA, Dunn BK. The human cadaver in the age of biomedical informatics. Anat Rec. 2002;269(1):20–32.

    Article  PubMed  Google Scholar 

  13. Carroll JB. Abilities in the domain of visual perception. In: Carroll JB, editor. Human cognitive abilities: a survey of factor-analytic studies. 1st ed. New York, NY: Cambridge University Press; 1993. p. 304–63.

    Chapter  Google Scholar 

  14. Nguyen N, Mulla A, Nelson AJ, Wilson TD. Visuospatial anatomy comprehension: the role of spatial visualization and problem solving strategies. Anat Sci Educ. 2014;7(4):280–8.

    Article  PubMed  Google Scholar 

  15. Garg AX, Norman G, Spero L, Taylor I. Learning anatomy: do new computer models improve spatial understanding? Med Teach. 1999;21(5):519–22.

    Article  Google Scholar 

  16. Garg A, Norman GR, Spero L, Maheshwari P. Do virtual computer models hinder anatomy learning? Acad Med. 1999;74(10 Suppl):S87–9.

    Article  CAS  PubMed  Google Scholar 

  17. Levinson AJ, Weaver B, Garside S, McGinn H, Norman GR. Virtual reality and brain anatomy: a randomised trial of e-learning instructional designs. Med Educ. 2007;41(5):495–501.

    Article  PubMed  Google Scholar 

  18. Brewer DN, Wilson TD, Eagleson R, de Ribaupierre S. Evaluation of neuroanatomical training using a 3D visual reality model. Stud Health Technol Inform. 2012;173:85–91.

    PubMed  Google Scholar 

  19. Nguyen N, Nelson AJ, Wilson TD. Computer visualizations: factors that influence spatial anatomy comprehension. Anat Sci Educ. 2012;5(2):98–108.

    Article  PubMed  Google Scholar 

  20. Vorstenbosch MA, Klaassen TP, Kooloos JG, Bolhuis SM, Laan RF. Do images influence assessment in anatomy? Exploring the effect of images on item difficulty and item discrimination. Anat Sci Educ. 2013;6(1):29–41.

    Google Scholar 

  21. Ozcinar Z. The topic of instructional design in research journals: a citation analysis for the years 1980-2008. Australas J Educ Technol. 2009;25(4):559–80.

    Google Scholar 

  22. Sweller J. Cognitive load during problem-solving – effects on learning. Cognit Sci. 1988;12(2):257–85.

    Article  Google Scholar 

  23. Mayer RE. The science of learning: determining how multimedia learning works. In: Mayer RE, editor. Multi-media learning. 2nd ed. New York, NY: Cambridge University Press; 2009.

    Chapter  Google Scholar 

  24. Mayer RE, Heiser J, Lonn S. Cognitive constraints on multimedia learning: when presenting more material results in less understanding. J Educ Psychol. 2001;93(1):187–98.

    Article  Google Scholar 

  25. Mayer RE, Moreno R. Nine ways to reduce cognitive load in multimedia learning. Educ Psychol. 2003;38(1):43–52.

    Article  Google Scholar 

  26. Chandler P, Sweller J. Cognitive Load Theory and the Format of Instruction. Cogn Instr. 1991;8(4):293–332.

    Article  Google Scholar 

  27. Sweller J. Instructional design in technical areas. Camberwell, Australia: ACER Press; 1999.

    Google Scholar 

  28. Mayer RE. Cognitive theory of multimedia learning. In: Mayer RE, editor. Cambridge handbook of multimedia learning. New York, NY: Cambridge University Press; 2005. p. 31–48.

    Chapter  Google Scholar 

  29. DeLeeuw KE, Mayer RE. A comparison of three measures of cognitive load: evidence for separable measures of intrinsic, extraneous, and germane load. J Educ Psychol. 2008;100(1):223–34.

    Article  Google Scholar 

  30. Leacock TL, Nesbit JC. A framework for evaluating the quality of multimedia learning resources. Educ Technol Soc. 2007;10(2):44–59.

    Google Scholar 

  31. Kirschner PA. Cognitive load theory: implications of cognitive load theory on the design of learning. Learn Instr. 2002;12(1):1–10.

    Article  Google Scholar 

  32. Khalil MK, Paas F, Johnson TE, Payer AF. Interactive and dynamic anatomical visualizations: the implication of cognitive load theory. Anat Rec. 2005;286B(1):15–20.

    Google Scholar 

  33. Hegarty M, Just MA. Understanding machines from text and diagrams. In: Mandl H, Levin JR, editors. Knowledge acquisition from text and pictures. Amsterdam: Elsevier; 1989. p. 171–94.

    Chapter  Google Scholar 

  34. Lowe RK. Animation and learning: selective processing of information in dynamic graphics. Learn Instr. 2003;13(2):157–76.

    Article  Google Scholar 

  35. Sweller J. Implications of cognitive load theory for multimedia learning. In: Mayer RE, editor. The Cambridge handbook of multimedia learning. New York, NY: Cambridge University Press; 2005. p. 19–48.

    Chapter  Google Scholar 

  36. Lowe R. Interrogation of a dynamic visualization during learning. Learn Instr. 2004;14:257–74.

    Article  Google Scholar 

  37. Kalyuga S. Prior knowledge principle in multimedia learning. In: Mayer RE, editor. Cambridge handbook of multimedia learning. New York, NY: Cambridge University Press; 2005. p. 325–38.

    Chapter  Google Scholar 

  38. Kalyuga, S. Adapting Levels of Instructional Support to Optimize Learning Complex Cognitive Skills. In: S. Kalyuga editor. Managing Cognitive Load in Adaptive Multimedia Learning. Hershey, PA, USA, IGI Global:246–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Wilson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wilson, T.D. (2015). Role of Image and Cognitive Load in Anatomical Multimedia. In: Chan, L., Pawlina, W. (eds) Teaching Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-08930-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08930-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08929-4

  • Online ISBN: 978-3-319-08930-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics