GeNeDis 2014 pp 165-177 | Cite as

Kinesia Paradoxa: A Challenging Parkinson’s Phenomenon for Simulation

  • Eirini Banou
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 822)


The present work aims to study extensively the literature on the phenomenon of “kinesia paradoxa” presented in Parkinson’s disease patients, who generally cannot move but under certain circumstances exhibit a sudden, brief period of mobility (walking or even running). The objective of this study was to identify the mechanisms causing this phenomenon and relate them with respectively computational simulations aiming to draw attention to gaps and weaknesses and possible directions for future research. The study of this phenomenon with the use of modeling techniques may be a decisive factor for its interpretation.


Noradrenergic Basal ganglia reserves Cerebellar circuit Visual cues Parkinson’s disease PK PD 


  1. 1.
    Souques AA (1921) Kinesie paradoxicale. Rev Neurol 37:559–560Google Scholar
  2. 2.
    Souques ΑA (1921) Rapport sur les syndromes parkinsoniens. Rev Neurol 28:534–573Google Scholar
  3. 3.
    Sacks O (1991) Awakenings. Pan Macmillan, LondonGoogle Scholar
  4. 4.
    Glickstein M, Stein J (1991) Paradoxical movement in Parkinson’s disease. Trends Neurosci 14(11):480–482CrossRefPubMedGoogle Scholar
  5. 5.
    Snijders AH, Bloem BR (2010) Cycling for freezing of gait. N Engl J Med 362(13):e46CrossRefPubMedGoogle Scholar
  6. 6.
    The Michael J. Fox Foundation for Parkinson’s Research,
  7. 7.
    Ballanger B et al (2006) “Paradoxical Kinesis” is not a Hallmark of Parkinson’s disease but a general property of the motor system. Mov Disord 21(9):1490–1495CrossRefPubMedGoogle Scholar
  8. 8.
    Rinehart N, McGinley J (2010) Is motor dysfunction core to autism spectrum disorder? Dev Med Child Neurol 52(8):697CrossRefPubMedGoogle Scholar
  9. 9.
    Rinehart NJ et al (2006) An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J Autism Dev Disord 36(6):757–767PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Critchley EM (1981) Speech disorders of Parkinsonism: a review. J Neurol Neurosurg Psychiatry 44(9):751–758PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Hammond TC (2010) New developments: falls, drooling & exercise in Parkinson’s Disease. The Parkinson’s Source (40). APDA magazineGoogle Scholar
  12. 12.
    Bonanni L et al (2010) Protracted benefit from paradoxical kinesia in typical and atypical parkinsonisms. Neurol Sci 31(6):751–756CrossRefPubMedGoogle Scholar
  13. 13.
    Schlesinger I, Erikh I, Yarnitsky D (2007) Paradoxical kinesia at war. Mov Disord 22(16):2394–2397CrossRefPubMedGoogle Scholar
  14. 14.
    Daroff RB (2008) Paradoxical kinesia. Mov Disord 23(8):1193CrossRefPubMedGoogle Scholar
  15. 15.
    Robottom BJ, Weiner WJ (2009) Kick and rush: paradoxical kinesia in Parkinson disease. Neurology 73(4):328–329CrossRefPubMedGoogle Scholar
  16. 16.
    Anzak A et al (2011) Improvements in rate of development and magnitude of force with intense auditory stimuli in patients with Parkinson’s disease. Eur J Neurosci 34(1):124–132CrossRefPubMedGoogle Scholar
  17. 17.
    Martin JP (1967) The basal ganglia and posture. J.B. Lippincott Company, Philadelphia, PAGoogle Scholar
  18. 18.
    Morris ME et al (1994) Ability to modulate walking cadence remains intact in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57(12):1532–1534PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Morris ME et al (1996) Stride length regulation in Parkinson’s disease normalization strategies and underlying mechanisms. Brain 119(2):551–568CrossRefPubMedGoogle Scholar
  20. 20.
    Azulay J-P et al (1999) Visual control of locomotion in Parkinson’s disease. Brain 122(1):111–120CrossRefPubMedGoogle Scholar
  21. 21.
    Kelly VE et al (2002) Interaction of levodopa and cues on voluntary reaching in Parkinson’s disease. Mov Disord 17(1):38–44CrossRefPubMedGoogle Scholar
  22. 22.
    Sacks O (2010) Musicophilia: tales of music and the brain. Chapter 20: Kinetic melody: Parkinson’s disease and music therapy. Random House Digital Inc., New York, NYGoogle Scholar
  23. 23.
    Styns F et al (2007) Walking on music. Hum Mov Sci 26(5):769–785CrossRefPubMedGoogle Scholar
  24. 24.
    Vella-Burrows T, Hancox G (2012) Singing and people with Parkinson’s. Sidney De Haan Research Centre for Arts and Health, Canterbury Christ Church University, CanterburyGoogle Scholar
  25. 25.
    Arias P, Cudeiro J (2010) Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS One 5(3):e9675PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hausdorff JM et al (2007) Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci 26(8):2369–2375CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandez del Olmo M, Cudeiro J (2003) A simple procedure using auditory stimuli to improve movement in Parkinson’s disease: a pilot study. Neurol Clin Neurophysiol 25:2003–2022Google Scholar
  28. 28.
    Salimpoor VN et al (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262CrossRefPubMedGoogle Scholar
  29. 29.
    Earhart GM (2009) Dance as therapy for individuals with Parkinson disease. Eur J Phys Rehabil Med 45(2):231–238PubMedCentralPubMedGoogle Scholar
  30. 30.
    Hackney ME, Earhart GM (2010) Effects of dance on balance and gait in severe Parkinson disease: a case study. Disabil Rehabil 32(8):679–684PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Houston S, McGill A (2013) A mixed-methods study into ballet for people living with Parkinson’s. Arts Health 5(2):103–119PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Hardie RJ (1990) Parkinson’s disease, Chapter 20. Chapman and Hall Medical, London, pp 559–596Google Scholar
  33. 33.
    Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev 45(1):38–78CrossRefPubMedGoogle Scholar
  34. 34.
    Yntema OP, Korf J (1987) Transient suppression by stress of haloperidol induced catalepsy by the activation of the adrenal medulla. Psychopharmacology (Berl) 91:131–134CrossRefGoogle Scholar
  35. 35.
    Szot P, Franklin A, Raskind MA (2011) The noradrenergic system is a major component in Parkinson’s disease. Etiology and pathophysiology of Parkinson’s disease. InTech Open Access, Rijeka, Croatia, pp 247–272Google Scholar
  36. 36.
    Jankovic J (2003) Pathophysiology and clinical assessment of Parkinsonian symptoms and signs. Neurol Dis Ther 59:71–108Google Scholar
  37. 37.
    Athanasios A, Rekkas J, Vlamos P (2011) Modeling the mitochondrial dysfunction in neurogenerative diseases due to high H + concentration. Bioinformation 6(5):173, PubMed: 21738307CrossRefGoogle Scholar
  38. 38.
    Alexiou AT, Vlamos PM, Volikas KG (2010) A theoretical artificial approach on reducing mitochondrial abnormalities in Alzheimer’s disease. Proceedings of the 10th International Conference on Information technology and applications in biomedicine: emerging technologies for patient specific healthcare (ITAB’10), Corfu, Greece, November 2010Google Scholar
  39. 39.
    Cannon WB (1932) The wisdom of the bodyGoogle Scholar
  40. 40.
    Colpaert FC (1987) Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 26(9):1431–1440CrossRefPubMedGoogle Scholar
  41. 41.
    Degryse A-D, Colpaert FC (1986) Symptoms and behavioral features induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in an old java monkey [Macaca cynamolgus fascicularis (Raffles)]. Brain Res Bull 16(5):561–571CrossRefPubMedGoogle Scholar
  42. 42.
    Wilson SK (1925) Croonian lectures. Lancet 2(1):53Google Scholar
  43. 43.
    DeLong MR (2000) The basal ganglia. Principles of neural science, vol 4. McGraw-Hill, New York, NY, pp 647–659Google Scholar
  44. 44.
    Graybiel AM (2000) The basal ganglia. Curr Biol 10(14):R509–R511CrossRefPubMedGoogle Scholar
  45. 45.
    Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117CrossRefPubMedGoogle Scholar
  46. 46.
    Michmizos KP (2011) Development of computational and mathematical models of biological neurons for the study and the control of the pathophysiology of motion. Dissertation. NTUAGoogle Scholar
  47. 47.
    De la Fuente-Fernández R et al (2002) Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 136(2):359–363CrossRefPubMedGoogle Scholar
  48. 48.
    De la Fuente-Fernandez R, Lidstone S, Stoessl AJ (2006) Placebo effect and dopamine release. Parkinson’s disease and Related Disorders. Springer, Vienna, pp 415–418CrossRefGoogle Scholar
  49. 49.
    Zubieta J-K et al (2006) Belief or need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav Immun 20(1):15–26CrossRefPubMedGoogle Scholar
  50. 50.
    Strafella AP, Ko JH, Monchi O (2006) Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage 31(4):1666–1672PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136(3):696–709CrossRefPubMedGoogle Scholar
  52. 52.
    Galley SL (2012) A joint compensatory and default mode network closely related to motor performance in Parkinson's disease. ThesisGoogle Scholar
  53. 53.
    Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10(6):732–739CrossRefPubMedGoogle Scholar
  54. 54.
    Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7):961–974CrossRefPubMedGoogle Scholar
  55. 55.
    Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 107(18):8452–8456PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain, 117(4):877–897Google Scholar
  57. 57.
    Rascol, O., et al. (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120(1):103–110Google Scholar
  58. 58.
    Avery MC et al (2012) Simulation of cholinergic and noradrenergic modulation of behavior in uncertain environments. Front Comput Neurosci 6:1–16CrossRefGoogle Scholar
  59. 59.
    Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron, 46(4):681–692Google Scholar
  60. 60.
    Nikita KS, Tsirogiannis GL (2007) Computational models simulating electrophysiological activity in the basal ganglia. Operative neuromodulation. Springer, Vienna, pp 505–511Google Scholar
  61. 61.
    Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3:1205–1211CrossRefPubMedGoogle Scholar
  62. 62.
    HofstoÈtter C, Mintz M, Verschure PFMJ (2002) The cerebellum in action: a simulation and robotics study. Eur J Neurosci 16:1361CrossRefGoogle Scholar
  63. 63.
    Ohyama T et al (2006) Learning-induced plasticity in deep cerebellar nucleus. J Neurosci 26(49):12656–12663CrossRefPubMedGoogle Scholar
  64. 64.
    Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20(3):290–297CrossRefPubMedGoogle Scholar
  65. 65.
    Carrillo RR et al (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94(1):18–27CrossRefPubMedGoogle Scholar
  66. 66.
    The Sensopac Project,
  67. 67.
  68. 68.
    Natalie W (2013) As machines get smarter, Evidence they learn like us. Quanta magazine. Simons Foundation, New York, NYGoogle Scholar
  69. 69.
    Alexiou A, Psiha M, Vlamos P (2012) An integrated ontology-based model for the early diagnosis of Parkinson’s disease. 8th Artificial Intelligence Applications & Innovations, H. Papadopoulos et al. (Eds.): AIAI 2012, IFIP AICT 382, pp. 442–450, 2012, © IFIP International Federation for Information Processing 2012, Springer, Heidelberg, Chalkidiki GreeceGoogle Scholar
  70. 70.
    Bach-y-Rita, P (1980) Brain plasticity as a basis of the development of rehabilitation procedures for hemiplegia. Scand J Rehabil Med 13(2–3), 73–83Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of InformaticsIonian UniversityCorfuGreece

Personalised recommendations