Skip to main content

Cut Admissibility by Saturation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8560)

Abstract

Deduction modulo is a framework in which theories are integrated into proof systems such as natural deduction or sequent calculus by presenting them using rewriting rules. When only terms are rewritten, cut admissibility in those systems is equivalent to the confluence of the rewriting system, as shown by Dowek, RTA 2003, LNCS 2706. This is no longer true when considering rewriting rules involving propositions. In this paper, we show that, in the same way that it is possible to recover confluence using Knuth-Bendix completion, one can regain cut admissibility in the general case using standard saturation techniques. This work relies on a view of proposition rewriting rules as oriented clauses, like term rewriting rules can be seen as oriented equations. This also leads us to introduce an extension of deduction modulo with conditional term rewriting rules.

Keywords

  • Inference Rule
  • Proof System
  • Natural Deduction
  • Saturation Process
  • Sequent Calculus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assaf, A., Burel, G.: Translating HOL to Dedukti (2013) (submitted)

    Google Scholar 

  2. Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. 2, pp. 1–30. Academic Press Inc. (1989)

    Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 1–31 (1994)

    CrossRef  MathSciNet  Google Scholar 

  4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)

    Google Scholar 

  5. Burel, G.: From axioms to rewriting rules, available on author’s web page

    Google Scholar 

  6. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 162–176. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-Pi-calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 611–706. Elsevier and MIT Press (2001)

    Google Scholar 

  9. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon modulo: When Achilles outruns the tortoise using deduction modulo. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 274–290. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  10. Dershowitz, N., Okada, M., Sivakumar, G.: Confluence of conditional rewrite systems. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 31–44. Springer, Heidelberg (1988)

    CrossRef  Google Scholar 

  11. Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  12. Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  13. Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  14. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Inf. Comput. 199(1-2), 3–23 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Hermant, O.: Resolution is cut-free. Journal of Automated Reasoning 44(3), 245–276 (2009)

    CrossRef  MathSciNet  Google Scholar 

  17. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  18. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Tableaux modulo theories using superdeduction – an application to the verification of B proof rules with the Zenon automated theorem prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 332–338. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  19. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)

    CrossRef  Google Scholar 

  20. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)

    CrossRef  MATH  Google Scholar 

  21. Vorobyov, S.G.: On the arithmetic inexpressiveness of term rewriting systems. In: LICS, pp. 212–217 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Burel, G. (2014). Cut Admissibility by Saturation. In: Dowek, G. (eds) Rewriting and Typed Lambda Calculi. RTA TLCA 2014 2014. Lecture Notes in Computer Science, vol 8560. Springer, Cham. https://doi.org/10.1007/978-3-319-08918-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08918-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08917-1

  • Online ISBN: 978-3-319-08918-8

  • eBook Packages: Computer ScienceComputer Science (R0)