Process Types as a Descriptive Tool for Interaction

Control and the Pi-Calculus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8560)


We demonstrate a tight relationship between linearly typed π-calculi and typed λ-calculi by giving a type-preserving translation from the call-by-value λμ-calculus into a typed π-calculus. The λμ-calculus has a particularly simple representation as typed mobile processes. The target calculus is a simple variant of the linear π-calculus. We establish full abstraction up to maximally consistent observational congruences in source and target calculi using techniques from games semantics and process calculi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A full version of this paper. Doc Technical Report DTR 2014/2, Department of Computing, Imperial College London (April 2014)Google Scholar
  2. 2.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Info. & Comp. 163, 409–470 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berger, M.: Program Logics for Sequential Higher-Order Control. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 194–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Inf. 42(2-3), 83–141 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Curien, P.-L., Herbelin, H.: Computing with Abstract Böhm Trees. In: Functional and Logic Programming, pp. 20–39. World Scientific (1998)Google Scholar
  7. 7.
    Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. ICFP, pp. 233–243 (2000)Google Scholar
  8. 8.
    Danvy, O., Filinski, A.: Representing control: A study of the CPS transformation. MSCS 2(4), 361–391 (1992)zbMATHMathSciNetGoogle Scholar
  9. 9.
    de Groote, P.: On the Relation between the lambda-mu-calculus and the Syntactic Theory of Sequential Control. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 31–43. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.: Syntactic theories of sequential control. TCS 52, 205–237 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. TCS 103(2), 235–271 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Führmann, C., Thielecke, H.: On the call-by-value CPS transform and its semantics. Inf. Comput. 188(2), 241–283 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Griffin, T.G.: A formulae-as-type notion of control. In: Proc. POPL, pp. 47–58 (1990)Google Scholar
  14. 14.
    Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and polarised proof-nets. Theor. Comput. Sci. 411(22-24), 2223–2238 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151, 393–456 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. TCS 221, 393–456 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Honda, K., Yoshida, N.: Noninterference through flow analysis. JFP 15(2), 293–349 (2005)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Honda, K., Yoshida, N.: A uniform type structure for secure information flow. TOPLAS 29(6) (2007)Google Scholar
  19. 19.
    Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Inf. & Comp. 163, 285–408 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)Google Scholar
  21. 21.
    Laird, J.: A game semantics of linearly used continuations. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 313–327. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Laurent, O.: Polarized games. In: Proc. LICS, pp. 265–274 (2002)Google Scholar
  23. 23.
    Laurent, O.: Polarized proof-nets and λμ-calculus. TCS 290(1), 161–188 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Milner, R.: Functions as Processes. MSCS 2(2), 119–141 (1992)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Moggi, E.: Notions of computation and monads. Inf. & Comp. 93(1), 55–92 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with control. In: Proc. POPL, pp. 215–227 (1997)Google Scholar
  27. 27.
    Parigot, M.: λ-μ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  28. 28.
    Reynolds, J.: The discovers of continuations. Lisp and Symbolic Computation 6, 233–247 (1993)CrossRefGoogle Scholar
  29. 29.
    Robinson, E.: Kohei Honda. Bulletin of the EATCS 112 (February 2014)Google Scholar
  30. 30.
    Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In: Proc. LFP, pp. 288–298 (1992)Google Scholar
  31. 31.
    Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. TCS 167(2), 235–274 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Sangiorgi, D.: From λ to π: or, rediscovering continuations. MSCS 9, 367–401 (1999)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Sassone, V.: ETAPS Award: Laudatio for Kohei Honda. Bulletin of the EATCS 112 (February 2014)Google Scholar
  34. 34.
    Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. MSCS 11(2), 207–260 (2001)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh (1997)Google Scholar
  36. 36.
    Thielecke, H.: Continuations, functions and jumps. SIGACT News 30(2), 33–42 (1999)CrossRefGoogle Scholar
  37. 37.
    van Bakel, S., Vigliotti, M.G.: An Output-Based Semantics of Λμ with Explicit Substitution in the π-Calculus. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 372–387. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Wadler, P.: Call-by-value is dual to call-by-name. In: Proc. ICFP, pp. 189–201 (2003)Google Scholar
  39. 39.
    Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Inf. Comput. 191(2), 145–202 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Yoshida, N., Honda, K., Berger, M.: Linearity and bisimulation. J. Log. Algebr. Program. 72(2), 207–238 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Queen MaryUniversity of LondonLondonUK
  2. 2.Imperial College LondonLondonUK
  3. 3.University of SussexSussexUK

Personalised recommendations