Abstract
We present a new procedure for testing satisfiability (over the reals) of a conjunction of polynomial equations. There are three possible return values for our procedure: it either returns a model for the input formula, or it says that the input is unsatisfiable, or it fails because the applicability condition for the procedure, called the eigen-condition, is violated. For the class of constraints where the eigen-condition holds, our procedure is a decision procedure. We describe satisfiability-preserving transformations that can potentially convert problems into a form where eigen-condition holds. We experimentally evaluate the procedure and discuss applicability.
Keywords
- Inference Rule
- Decision Procedure
- Real Eigenvalue
- Input Formula
- Cylindrical Algebraic Decomposition
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Supported in part by DARPA under contract FA8750-12-C-0284 and by the NSF grant SHF:CSR-1017483. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.
Chapter PDF
References
Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. J. Autom. Reasoning 44(3), 175–205 (2010)
Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based completion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 285–301. Springer, Heidelberg (1994)
Buchberger, B.: A critical-pair completion algorithm for finitely generated ideals in rings. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 137–161. Springer, Heidelberg (1983)
Cheng, C.-H., Ruess, H., Shankar, N.: Jbernstein: A validity checker for generalized polynomial constraints. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 656–661. Springer, Heidelberg (2013)
Cheng, C.-H., Shankar, N., Ruess, H., Bensalem, S.: Efsmt: A logical framework for cyber-physical systems. CoRR, abs/1306.3456 (2013)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. CACM 5(7), 394–397 (1962)
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)
Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)
Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 286–300. Springer, Heidelberg (2012)
Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214. Springer, Heidelberg (2013)
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)
Iwane, H., Yanami, H., Anai, H.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems. In: Proc. Intl. Workshop on Symb. Numeric Comp., SNC, pp. 168–177. ACM (2011)
Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)
Leike, J.: Software and benchmarks for synthesis for polynomial lasso programs (2014), http://www.csl.sri.com/~tiwari/softwares/synthesis_for_polynomial_lasso_programs_source.zip
Leike, J., Tiwari, A.: Synthesis for polynomial lasso programs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 434–452. Springer, Heidelberg (2014)
Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 193–207. Springer, Heidelberg (2013)
Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010)
Microsoft Research. Z3: An efficient SMT solver, http://research.microsoft.com/projects/z3/
Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming Ser. B 96(2), 293–320 (2003)
Rebiha, R., Matringe, N., Moura, A.V.: Transcendental inductive invariants generation for non-linear differential and hybrid systems. In: Proc. Hybrid Syst.: Comp. and Cntrl., HSCC, pp. 25–34. ACM (2012)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods in System Design 32(1), 25–55 (2008)
Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program verification and program synthesis. STTT 15(5-6), 497–518 (2013)
Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207 (1974)
Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proc. Intl. Symp. on Symb. and Alg. Comp., ISSAC, pp. 329–336. ACM (2011)
Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)
Tiwari, A., Khanna, G.: Nonlinear Systems: Approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Tiwari, A., Lincoln, P. (2014). A Nonlinear Real Arithmetic Fragment. In: Biere, A., Bloem, R. (eds) Computer Aided Verification. CAV 2014. Lecture Notes in Computer Science, vol 8559. Springer, Cham. https://doi.org/10.1007/978-3-319-08867-9_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-08867-9_48
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08866-2
Online ISBN: 978-3-319-08867-9
eBook Packages: Computer ScienceComputer Science (R0)