Skip to main content

From LTL to Deterministic Automata: A Safraless Compositional Approach

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8559)

Abstract

We present a new algorithm to construct a (generalized) deterministic Rabin automaton for an LTL formula φ. The automaton is the product of a master automaton and an array of slave automata, one for each G-subformula of φ. The slave automaton for G ψ is in charge of recognizing whether FG ψ holds. As opposed to standard determinization procedures, the states of all our automata have a clear logical structure, which allows for various optimizations. Our construction subsumes former algorithms for fragments of LTL. Experimental results show improvement in the sizes of the resulting automata compared to existing methods.

Keywords

  • Linear Temporal Logic
  • Parallel Composition
  • Acceptance Condition
  • Linear Temporal Logic Formula
  • Deterministic Automaton

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  2. Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: Beyond the (F,G)-fragment. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)

    Google Scholar 

  4. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  5. Blahoudek, F., Křetínský, M., Strejček, J.: Comparison of LTL to deterministic Rabin automata translators. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 164–172. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  6. Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: World Congress on Formal Methods, pp. 253–271 (1999)

    Google Scholar 

  8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)

    Google Scholar 

  9. Dam, M.: Fixed points of Büchi automata. In: FSTTCS, pp. 39–50 (1992)

    Google Scholar 

  10. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  11. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  12. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  13. Esparza, J., Křetínský, J.: From LTL to deterministic automata: A safraless compositional approach. Technical Report abs/1402.3388, arXiv.org (2014)

    Google Scholar 

  14. Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  15. Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  16. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL formulae to Büchi automata. In: FORTE, pp. 308–326 (2002)

    Google Scholar 

  17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001); Tool accessible at http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

  18. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  20. Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  21. Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de/

  22. Křetínský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL∖GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  24. Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  25. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS, pp. 255–264 (2006)

    Google Scholar 

  26. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE Computer Society (1988)

    Google Scholar 

  27. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  28. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: FOSSACS, pp. 167–181 (2009)

    Google Scholar 

  29. Spec Patterns: Property pattern mappings for LTL, http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

  30. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL, pp. 250–259 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Esparza, J., Křetínský, J. (2014). From LTL to Deterministic Automata: A Safraless Compositional Approach. In: Biere, A., Bloem, R. (eds) Computer Aided Verification. CAV 2014. Lecture Notes in Computer Science, vol 8559. Springer, Cham. https://doi.org/10.1007/978-3-319-08867-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08867-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08866-2

  • Online ISBN: 978-3-319-08867-9

  • eBook Packages: Computer ScienceComputer Science (R0)