Finitely Additive Probability Measures in Automated Medical Diagnostics

  • Milica Knežević
  • Zoran Ognjanović
  • Aleksandar Perović
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 443)


We describe one probabilistic approach to classification of a set of objects when a classification criterion can be represented as a propositional formula. It is well known that probability measures are not truth functional. However, if μ is any probability measure and α is any propositional formula, μ(α) is uniquely determined by the μ-values of conjunctions of pairwise distinct propositional letters appearing in α. In order to infuse truth functionality in the generation of finitely additive probability measures, we need to find adequate binary operations on [0,1] that will be truth functions for finite conjunctions of pairwise distinct propositional letters. The natural candidates for such truth functions are t-norms. However, not all t-norms will generate a finitely additive probability measure. We show that Gödel’s t-norm and product t-norm, as well as their linear convex combinations, can be used for the extension of any evaluation of propositional letters to finitely additive probability measure on formulas. We also present a software for classification of patients with suspected systemic erythematosus lupus (SLE), which implements the proposed probabilistic approach.


probability measures classification fuzzy logic soft computing medical diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A., Seikmann, J.H. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Inc., New York (1994)Google Scholar
  2. 2.
    Dubois, D., Prade, H.: Possiblistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144, 3–23 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dubois, D., Godo, L., Prade, H.: Weighted logic for artificial intelligence: an introductory discussion. In: Godo, L., Prade, H. (eds.) ECAI 2012 Workshop, Weighted Logic for Artificial Intelligence, pp. 1–7 (2012)Google Scholar
  4. 4.
    Esteva, F., Godo, L., Montagna, F.: The LΠ and \(L\Pi\frac{1}{2}\) logics: two complete fuzzy logics joining Łukasiewicz and product logic. Archive for Mathematical Logic 40, 39–67 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1-2), 78–128 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Flaminio, T.: Strong non-standard completeness for fuzzy logic. Soft Computing 12(4), 321–333 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Godo, L., Marchioni, E.: Coherent conditional probability in a fuzzy logic setting. Logic Journal of the IGPL 14(3), 457–481 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hailperin, T.: Sentential Probability Logic. Associated University Presses, Inc., London (1996)Google Scholar
  9. 9.
    Hajek, P., Esteva, F., Godo, L.: Fuzzy logic and probability. In: Proceedings of the 11th Conference on Uncertainty in Artificial Inteligence, Montreal, Canada, pp. 237–244 (1995)Google Scholar
  10. 10.
    Hájek, P.: Methemathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  11. 11.
    Halpern, J.: Reasoning about Uncertainty. The MIT Press, Cambridge (2003)Google Scholar
  12. 12.
    Lehmann, D.: Generalized qualitative probability: savage revisited. In: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI 1996), pp. 381–388 (1996)Google Scholar
  13. 13.
    Marchioni, E., Montagna, F.: On triangular norms and uninorms definable in \(L\Pi\frac{1}{2}\). International Journal of Approximate Reasoning 47(2), 179–201 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Narens, L.: On qualitative axiomatizations for probability theory. Journal of Philosophical Logic 9(2), 143–151 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ognjanović, Z., Rašković, M.: A logic with higher order probabilities. Publications de l’Institut Mathematique, Nouvelle série 60(74), 1–4 (1996)Google Scholar
  17. 17.
    Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. Journal of Logic and Computation 9(2), 181–195 (1999)Google Scholar
  18. 18.
    Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theoretical Computer Science 247(1-2), 191–212 (2000)Google Scholar
  19. 19.
    Ognjanović, Z., Perović, A., Rašković, M.: Logic with the qualitative probability operator. Logic Journal of IGPL 16(2), 105–120 (2008)Google Scholar
  20. 20.
    Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. In: Ognjanović, Z. (ed.) Logic in Computer Science, vol. 12(20), pp. 35–111. Mathematical Institute of Serbian Academy of Sciences and Arts (2009)Google Scholar
  21. 21.
    Ognjanović, Z., Perović, A., Rašković, M., Radojević, D.: Finitely additive probability measures on classical propositional formulas definable by Gödel’s t-norm and product t-norm. Fuzzy Sets and Systems 169(1), 65–90 (2011)Google Scholar
  22. 22.
    Radojević, D.: [0,1]-valued logic: a natural generalization of Boolean logic. Yugoslav Journal on Operations Research 10(2), 185–216 (2000)zbMATHGoogle Scholar
  23. 23.
    Radojević, D.: Interpolative realization of Boolean algebra. In: 8th Seminar on Neural Network Applications in Electrical Engineering (NEUREL 2006), pp. 201–206 (2006)Google Scholar
  24. 24.
    Radojević, D.: Interpolative realization of Boolean algebra as a consistent frame for gradation and/or fuzziness. In: Nikravesh, M., Kacprzyk, J., Zadeh, L.A. (eds.) Forging New Frontiers: Fuzzy Pioneers II. STUDFUZZ, vol. 218, pp. 295–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Radojević, D.: Logical aggregation based on interpolative realization of Boolean algebra. Mathware and Soft Computing 15(1), 125–141 (2008)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Radojević, D., Perović, A., Ognjanović, Z., Rašković, M.: Interpolative Boolean logic. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 209–219. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Rašković, M.: Classical logic with some probability operators. Publications de l’Institut Mathematique, Nouvelle Série 53(67), 1–3 (1993)Google Scholar
  28. 28.
    Rasković, M., Ognjanović, Z.: A first order probability logic LP Q. Publications de l’Institut Mathematique, Nouvelle Série 65(79), 1–7 (1999)Google Scholar
  29. 29.
    Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional probabilities that can model default reasoning. International Journal of Approximate Reasoning 49(1), 52–66 (2008)Google Scholar
  30. 30.
    van der Hoek, W.: Some considerations on the logic P F D: a logic combining modality and probability. Journal of Applied Non-Classical Logics 7(3), 287–307 (1997)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wellman, M.P.: Some varieties of qualitative probability. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 171–179. Springer, Heidelberg (1995)Google Scholar
  32. 32.
    JSON (JavaScript Object Notation),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Milica Knežević
    • 1
  • Zoran Ognjanović
    • 1
  • Aleksandar Perović
    • 2
  1. 1.Mathematical Institute of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Faculty of Transport and Traffic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations