Skip to main content

The X-μ Approach: In Theory and Practice

  • Conference paper
  • 968 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 444)

Abstract

Criticisms exist for fuzzy set theory which do not reside in classical (or “crisp”) set theory, some such issues exhibited by fuzzy set theory regard the law of excluded middle and law of contradiction. There are also additional complexities in fuzzy set theory for monotonicity, order and cardinality. Fuzzy set applications either avoid these issues, or use them to their advantage. The X-μ approach, however, attempts to solve some of these issues through analysis of inverse fuzzy membership functions. Through the inverse fuzzy membership function it is possible to computationally calculate classical set operations over an entire fuzzy membership. This paper firstly explores how the X-μ approach compares to both classical/crisp set theory and conventional fuzzy set theory, and explores how the problems regarding the laws of excluded middle and contradiction might be solved using X-μ. Finally the approach is implemented and applied to an area of big data over the world-wide-web, using movie ratings data.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08852-5_42
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08852-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh, L.A.: Discussion: Probability theory and fuzzy logic are complementary rather than competitive. Technometrics 37(3), 271–276 (1995)

    CrossRef  Google Scholar 

  2. Lawry, J., Martin, T.: Conditional beliefs in a bipolar framework. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 364–375. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Goertzel, I.F., Ikl, M., Heljakka, A.: Probabilistic logic networks: A comprehensive framework for uncertain inference. Springer (2008)

    Google Scholar 

  4. Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23(2), 421–427 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Elkan, C., Berenji, H., Chandrasekaran, B., de Silva, C., Attikiouzel, Y., Dubois, D., Prade, H., Smets, P., Freksa, C., Garcia, O., Klir, G., Yuan, B., Mamdani, E., Pelletier, F., Ruspini, E., Turksen, B., Vadiee, N., Jamshidi, M., Wang, P.Z., Tan, S.K., Tan, S., Yager, R., Zadeh, L.: The paradoxical success of fuzzy logic. IEEE Expert 9(4), 3–49 (1994)

    CrossRef  Google Scholar 

  6. Laviolette, M., Seaman Jr., J.W.: The efficacy of fuzzy representations of uncertainty. IEEE Transactions on Fuzzy Systems 2(1), 4–15 (1994)

    CrossRef  Google Scholar 

  7. Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing 12(2), 165–175 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Sánchez, D., Delgado, M., Vila, M.A., Chamorro-Martínez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets and Systems 192, 159–175 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Martin, T., Azvine, B.: The x-mu approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: 2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI), pp. 24–29 (2013)

    Google Scholar 

  10. Martin, T.: The x-mu representation of fuzzy sets - regaining the excluded middle. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 67–73 (2013)

    Google Scholar 

  11. Lewis, D., Martin, T.: X-mu; fuzzy association rule method. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 144–150 (2013)

    Google Scholar 

  12. Zadeh, L.A.: Calculus of fuzzy restrictions. Electronics Research Laboratory, University of California (1975)

    Google Scholar 

  13. Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

    CrossRef  Google Scholar 

  14. Agrawal, R., Srikant, R. et al.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewis, D.J., Martin, T.P. (2014). The X-μ Approach: In Theory and Practice. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)