Coping with Imprecision During a Semi-automatic Conceptual Indexing Process

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 444)


Concept-based information retrieval is known to be a powerful and reliable process. It relies on a semantically annotated corpus, i.e. resources indexed by concepts organized within a domain ontology. The conception and enlargement of such index is a tedious task, which is often a bottleneck due to the lack of (semi-)automated solutions. In this paper, we first introduce a solution to assist experts during the indexing process thanks to semantic annotation propagation. The idea is to let them position the new resource on a semantic map, containing already indexed resources and to propose an indexation of this new resource based on those of its neighbors. To further help users, we then introduce indicators to estimate the robustness of the indexation with respect to the indicated position and to the annotation homogeneity of nearby resources. By computing these values before any interaction, it is possible to visually inform users on their margins of error, therefore reducing the risk of having a non-optimal, thus unsatisfying, annotation.


conceptual indexing semantic annotation propagation imprecision management semantic similarity man-machine interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haav, H.M., Lubi, T.L.: A survey of concept-based information retrieval tools on the web. In: Proceedings of the 5th East-European Conference ADBIS, vol. 2, pp. 29–41 (2001)Google Scholar
  2. 2.
    Crampes, M., Ranwez, S., Velickovski, F., Mooney, C., Mille, N.: An integrated visual approach for music indexing and dynamic playlist composition. In: Electronic Imaging 2006, p. 607103. International Society for Optics and Photonics (2006)Google Scholar
  3. 3.
    Crampes, M., de Oliveira-Kumar, J., Ranwez, S., Villerd, J.: Visualizing social photos on a hasse diagram for eliciting relations and indexing new photos. IEEE Transactions on Visualization and Computer Graphics 15(6), 985–992 (2009)CrossRefGoogle Scholar
  4. 4.
    Lazaridis, M., Axenopoulos, A., Rafailidis, D., Daras, P.: Multimedia search and retrieval using multimodal annotation propagation and indexing techniques. Signal Processing: Image Communication 28(4), 351–367 (2013)Google Scholar
  5. 5.
    Marchiori, M.: The limits of web metadata, and beyond. Computer Networks and ISDN Systems 30(1), 1–9 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Abrouk, L., Gouaïch, A.: Automatic annotation using citation links and co-citation measure: Application to the water information system. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 44–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Jeon, J., Manmatha, R.: Using maximum entropy for automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 24–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Su, Z.: Improving cbir by semantic propagation and cross modality query expansion. In: Proc. of the Int. Workshop on Multimedia Content-based Indexing and Retrieval, Brescia, pp. 19–21 (2001)Google Scholar
  9. 9.
    Shevade, B., Sundaram, H.: Vidya: an experiential annotation system. In: Proceedings of the 2003 ACM SIGMM Workshop on Experiential Telepresence, pp. 91–98. ACM (2003)Google Scholar
  10. 10.
    Lin, D.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304 (1998)Google Scholar
  11. 11.
    Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new measure for functional similarity of gene products based on gene ontology. BMC Bioinformatics 7(1), 302 (2006)CrossRefGoogle Scholar
  12. 12.
    Harispe, S., Janaqi, S., Ranwez, S., Montmain, J.: From theoretical framework to generic semantic measures library. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013 Workshops. LNCS, vol. 8186, pp. 739–742. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: The Semantic Measures Library and Toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies (2013), doi:10.1093/bioinformaticsGoogle Scholar
  14. 14.
    Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in wordnet. In: ECAI, vol. 16, p. 1089. Citeseer (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre de recherche LGI2P de l’école des mines d’Alès, Parc Scientifique Georges BesseNîmes cedex 1France
  2. 2.Montpellier SupAgro, UMR AGAPMontpellierFrance

Personalised recommendations