An Introductory Mathematics Computer Course as a Supplement to a Mathematical Bridge Course

  • Sabina Jeschke
  • Olivier Pfeiffer
  • Omar Musa Hasan
  • Erhard Zorn
Chapter

Abstract

At the beginning of their studies the majority of freshmen are overcharged in the transition from high school to academic education. The biggest continual problems appear in mathematics for engineering students or natural scientists. This is based on the high degree of abstraction and on the fact that the mathematical education takes place at the beginning of their studies. Thus, deficiencies become apparent at an early stage. In order to facilitate freshmen’s transition from high school to the university the Department of Mathematics of Technische Universität Berlin offers a four-week introductory course to mathematics before the beginning of each semester. The course is addressed particularly to freshmen of engineering, natural sciences and mathematics. Additionally, a so-called mathematics computer course is offered with capacity for a part of the participants of the introductory mathematics course. In this two-week course the participants learn how to handle the Linux operating system, how to employ a computer algebra system (Maple) and they obtain an introduction to the scientific text processing system LaTeX. We investigated if the mathematics bridge course and the mathematics computer course lead to a better academic performance by the students in their later courses.

Keywords

Mathematics Bridge Course Computer Algebra System Engineering Mathematics LaTeX Undergraduate Students 

Notes

Acknowledgements

We thank Ekkehard-H. Tjaden for his constant support using the Unix Pool of the Department of Mathematics. O. H. thanks for the hospitality at Technische Universität Berlin during his stays in October 2011 and March 2012 when this paper was prepared.

References

  1. 1.
    Scharlau, Winfried. 1995. Schulwissen Mathematik: Ein Überblick; was ein Studienanfänger von der Mathematik wissen sollte. Braunschweig: Vieweg.Google Scholar
  2. 2.
    Schirotzek, Winfried, and Siegfried Scholz. 2005. Starthilfe Mathematik – Für Studienanfänger der Ingenieur-, Natur- und Wirtschaftswissenschaften. 5 ed. Vieweg + Teubner.Google Scholar
  3. 3.
    Cramer, Erhard, and Johanna Neslehova. 2005. Vorkurs Mathematik: Arbeitsbuch zum Studienbeginn in Bachelor-Studiengängen. 2 ed. Dordrecht, Heidelberg, London, New York: Springer.Google Scholar
  4. 4.
    Budny, D. 1995. Mathematics bridge program. Frontiers in Education Conference, 1995. Proceedings, volume 1, 2a4.11–2a4.15 vol.1.Google Scholar
  5. 5.
    Jeschke, Sabina, Akiko Kato, Olivier Pfeiffer, and Erhard Zorn. 2009, June. Pre-Freshmen Students Gearing up with Early Bird. Proceedings of the 2009 ASEE Annual Conference, Austin, TX, USA. American Society for Engineering Education.Google Scholar
  6. 6.
    Online Mathematik Brückenkurs. http://www3.math.tu-berlin.de/OMB/.
  7. 7.
    TU9 – German Institutes of Technology. http://www.tu9.de/.
  8. 8.
  9. 9.
    Heck, André. 2003. Introduction to maple. 3 ed. New York: Springer.Google Scholar
  10. 10.
    Maple User Manual, Maplesoft, a division of Waterloo Maple Inc. 2011. ISBN 978-1-926902-07-4. www.maplesoft.com.
  11. 11.
    Bernardin, L., P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn, J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M. Vorkoetter. 2011. Maple programming guide, maplesoft, a division of waterloo maple Inc. ISBN 978-1-926902-08-1. www.maplesoft.com.
  12. 12.
    Knuth, Donald E. 1986. Computers & typesetting, volume A, the TeXbook. QA1Addison-Wesley.Google Scholar
  13. 13.
    Knuth, Donald E. 1986. Computers & typesetting, volume B, TeX: The program. Addison-Wesley.Google Scholar
  14. 14.
    Lamport, Leslie. 1994. Latex: A document preperation system. 2 ed. Addison-Wesley Professional.Google Scholar
  15. 15.
    Mittelbach, Frank, and Michel Goossens. 2005. Der Latex-Begleiter. 2 ed. München: Pearson Studium.Google Scholar
  16. 16.
    MATLAB – The Language of Technical Computing – MathWorks Deutschland. http://www.mathworks.com/products/matlab/.
  17. 17.
    Maxima, a Computer Algebra System. http://maxima.sourceforge.net/.
  18. 18.
    Mathematica, as listed in your bibliography. http://www.wolfram.com/mathematica/reference.
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sabina Jeschke
    • 1
  • Olivier Pfeiffer
    • 2
  • Omar Musa Hasan
    • 3
  • Erhard Zorn
    • 2
  1. 1.IMA/ZLW & IfURWTH Aachen UniversityAachenGermany
  2. 2.School of Mathematics and Natural Sciences, Institue of MathematicsCenter for Multimedia in Education and Research, Technische Universität BerlinBerlinGermany
  3. 3.Department of Electrical EngineeringAmerican University of MdabaMdabaJordan

Personalised recommendations