Skip to main content

Consequences of Changing Precipitation Patterns for Ecosystem Functioning in Grasslands: A Review

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

Grassland ecosystems worldwide provide agricultural goods and important ecosystem services. Productivity and other ecosystem processes in grasslands are, in most cases, strongly linked to the ecosystems’ water status, a factor that is predicted to experience major alterations with global climate change. Future predictions include changes in the amount, distribution, frequency, and intensity of precipitation, which, particularly in grasslands, may have important consequences for ecosystem state and functioning. This review analyses the effects of experimental precipitation manipulation on plant productivity, species diversity, soil/ecosystem respiration, and soil nitrogen in grassland-type ecosystems over a wide range of climate types, synthesising the results from 72 studies.

We found that sensitivity of ecosystem processes to changes in precipitation amounts increased with aridity. In addition, ecosystem processes were more responsive to precipitation addition than to precipitation reduction. However, we did observe high resilience of grassland ecosystems to both changing precipitation amounts and variability, which may be explained by the fact that the applied manipulation scenarios often lie within the range of the natural inter-annual precipitation variability experienced by ecosystems, and by evolutionary adaptation of grassland ecosystems to these natural inter-annual differences. Long-term effects of altered precipitation regimes on ecosystem processes, i.e. by changes in species composition and soil properties, are rarely covered within the time frame of most studies and thus cannot be ruled out as a possible consequence of a gradually changing climate.

Increasing the comparability between individual precipitation manipulation studies is needed to facilitate the evaluation of ecosystem responses to altered precipitation regimes. We recommend future precipitation manipulation studies to aim at capturing possible long-term effects with comparable designs and standardised data compilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RC (1982) An evolutionary model summarizing the roles of fire, climate and grazing animals in the origin and maintenance of grasslands: an end paper. In: Estes J, Tyrl R, Brunken J (eds) Grasses and grasslands: systematics and ecology. University of Oklahoma Press, Norman, OK, pp 297–308

    Google Scholar 

  • Angert AL, Horst JL, Huxman TE, Venable DL (2010) Phenotypic plasticity and precipitation response in Sonoran Desert winter annuals. Am J Bot 97:405–411

    PubMed  Google Scholar 

  • Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Glob Change Biol 10:359–373

    Google Scholar 

  • Atjay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle. Wiley, Chichester, pp 129–181

    Google Scholar 

  • Augustine DJ, McNaughton SJ (2004) Temporal asynchrony in soil nutrient dynamics and plant production in a semiarid ecosystem. Ecosystems 7:829–840

    CAS  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    PubMed  Google Scholar 

  • Bachman S, Heisler-White JL, Pendall E, Williams DG, Morgan JA, Newcomb J (2010) Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 162:791–802

    PubMed  Google Scholar 

  • Báez S, Collins SL, Pockman WT, Johnson JE, Small EE (2013) Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia 172:1117–1127

    PubMed  Google Scholar 

  • Bates JD, Svejcar T, Miller RF, Angell RA (2006) The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–697

    Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Peñuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012) Precipitation manipulation experiments—challenges and recommendations for the future. Ecol Lett 15:899–911

    PubMed  Google Scholar 

  • Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana J-F (2010) Effects of warming, summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. Ecosystems 13:888–900

    CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    PubMed  CAS  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824

    Google Scholar 

  • Brancaleoni L, Gualmini M, Tomaselli M, Gerdol R (2007) Responses of subalpine dwarf-shrub heath to irrigation and fertilization. J Veg Sci 18:337–344

    Google Scholar 

  • Byrne KM, Lauenroth WK, Adler PB (2013) Contrasting effects of precipitation manipulations on production in two sites within the Central Grassland Region, USA. Ecosystems 16:1039–1051

    Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979

    Google Scholar 

  • Chen S, Lin G, Huang J, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Change Biol 15:2450–2461

    Google Scholar 

  • Cherwin K, Knapp AK (2012) Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852

    PubMed  Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Change Biol 14:1382–1394

    Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420

    Google Scholar 

  • Collins SL, Koerner SE, Plaut JA, Okie JG, Brese D, Calabrese LB, Carvajal A, Evansen RJ, Nonaka E (2012) Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct Ecol 26:1450–1459

    Google Scholar 

  • Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Google Scholar 

  • de Dato GD, De Angelis P, Sirca C, Beier C (2010) Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga). Plant Soil 327:153–166

    CAS  Google Scholar 

  • de Schrijver A, Verheyen K, Mertens J, Staelens J, Wuyts K, Muys B (2008) Nitrogen saturation and net ecosystem production. Nature 451:E1. doi:10.1038/nature06578

    PubMed  Google Scholar 

  • Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC (2012) Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronus? Oecologia 170:799–808

    PubMed  Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829–1837

    CAS  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–442

    Google Scholar 

  • Emmett BA, Beier C, Estiarte M, Tietema A, Kristensen HL, Williams D, Peñuelas J, Schmidt I, Sowerby A (2004) The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7:625–637

    Google Scholar 

  • Evans SE, Burke IC (2013) Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems 16:20–33

    CAS  Google Scholar 

  • Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99:1500–1507

    Google Scholar 

  • Faber-Langendoen D, Josse C (2010) World grasslands and biodiversity patterns. NatureServe, Arlington, VA

    Google Scholar 

  • Fan XH, Li YC, Alva AK (2011) Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers. Commun Soil Sci Plant Anal 42:1111–1122

    CAS  Google Scholar 

  • Fan J, Jones SB, Qi LB, Wang QJ, Huang MB (2012) Effects of precipitation pulses on water and carbon dioxide fluxes in two semiarid ecosystems: measurement and modeling. Environ Earth Sci 67:2315–2324

    CAS  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000) Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3:308–319

    Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251

    PubMed  Google Scholar 

  • Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8:3052–3068

    Google Scholar 

  • February EC, Higgins SI, Bond WJ, Swemmer L (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94:1155–1164

    PubMed  Google Scholar 

  • Fernandez-Going BM, Harrison S (2013) Effects of experimental water addition depend on grassland community characteristics. Plant Ecol 214:777–786

    Google Scholar 

  • Fiala K, Tůma I, Holub P (2009) Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems. Ecosystems 12:906–914

    Google Scholar 

  • Fiala K, Tůma I, Holub P (2010) Interannual variability in plant below-ground biomass in a mountain grassland affected by manipulated rainfall. Beskydy 3:133–138

    Google Scholar 

  • Fiala K, Tůma I, Holub P (2012) Interannual variation in root production in grasslands affected by artificially modified amount of rainfall. ScientificWorldJournal 2012:805298

    PubMed  PubMed Central  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    CAS  Google Scholar 

  • Flanagan LB, Adkinson AC (2011) Interacting controls on productivity in a northern Great Plains grassland and implications for response to ENSO events. Glob Change Biol 17:3293–3311

    Google Scholar 

  • Flanagan LB, Sharpa EJ, Letts MG (2013) Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agric For Meteorol 173:40–52

    Google Scholar 

  • Fraser LH, Henry HAL, Carlyle CN, White SR, Beierkuhnlein C, Cahill JF, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, Smith MD, Sternberg M, Turkington R (2013) Coordinated distributed experiments: an emerging tool for testing global hypothesis in ecology and environmental science. Front Ecol Environ 11:147–155

    Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Google Scholar 

  • Gherardi LA, Sala OE (2013) Automated rainfall manipulation system: a reliable and inexpensive tool for ecologists. Ecosphere 4:article 18

    Google Scholar 

  • Gilgen AK, Buchmann N (2009) Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6:2525–2539

    Google Scholar 

  • Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765

    PubMed  CAS  Google Scholar 

  • Grime JP, Fridley JD, Askew AP, Thompson K, Hodgson JG, Bennett CR (2008) Long-term resistance to simulated climate change in an infertile grassland. PNAS 105:10028–10032

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005) Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Change Biol 11:322–334

    Google Scholar 

  • Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Change Biol 13:2341–2348

    Google Scholar 

  • Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158:129–140

    PubMed  Google Scholar 

  • Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Change Biol 15:2894–2904

    Google Scholar 

  • Hoeppner SS, Dukes JS (2012) Interactive responses of old-field plant growth and composition to warming and precipitation. Glob Change Biol 18:1754–1768

    Google Scholar 

  • Holub P, Fabšičová M, Tůma I, Záhora J, Fiala K (2013) Effects of artificially varying amounts of rainfall on two semi-natural grassland types. J Veg Sci 24:518–529

    Google Scholar 

  • Hsu JS, Powell J, Adler PB (2012) Sensitivity of mean annual primary production to precipitation. Glob Change Biol 18:2246–2255

    Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004a) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654

    PubMed  CAS  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Pockman W, Ogle K, Sandquist D, Potts DL, Schwinning S (2004b) Precipitation pulses and carbon balance in semi-arid and arid ecosystems. Oecologia 141:254–268

    PubMed  Google Scholar 

  • Inglima I, Alberti G, Bertoloni T, Vaccari FP, Giolo B, Miglietta F, Cortufo MF, Peressortti A (2009) Precipitation pulse enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Glob Change Biol 15:1289–1301

    Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505

    PubMed  CAS  Google Scholar 

  • Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1988) Plant and soil nitrogen dynamics in California annual grassland. Plant Soil 110:9–17

    Google Scholar 

  • Jarvis PG, Rey A, Petsikos C, Wingate L, Rayment M, Pereira JS, Banza J, David JS, Miglietta F, Borgetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940

    PubMed  CAS  Google Scholar 

  • Jongen M, Caldeira MC, Pereira JS (2009) The effect of drought and subsequent precipitation pulse on productivity, species composition, and carbon fluxes of the herbaceous understorey in a cork oak woodland. Nat Prec. doi:10.1038/npre.2009.3706.1

    Google Scholar 

  • Jongen M, Pereira JS, Aires LM, Pio CA (2011) The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland. Agric For Meteorol 151:595–606

    Google Scholar 

  • Jongen M, Lecomte X, Unger S, Fangueiro D, Pereira JS (2013a) Precipitation variability does not affect soil respiration and nitrogen dynamics in the understorey of a Mediterranean oak woodland. Plant Soil 372:235–251

    CAS  Google Scholar 

  • Jongen M, Lecomte X, Unger S, Pintó-Marijuan M, Pereira JS (2013b) The impact of changes in the timing of precipitation on the herbaceous understorey of Mediterranean oak woodlands. Agric For Meteorol 171–172:163–173

    Google Scholar 

  • Jongen M, Unger S, Fangueiro D, Cerasoli S, Silva JMN, Pereira JS (2013c) Resilience of montado understorey to experimental precipitation variability fails under severe natural drought. Agric Ecosyst Environ 178:18–30

    Google Scholar 

  • Jongen M, Unger S, Pereira JS (2013d) Effects of precipitation variability on carbon exchange in the understorey of a nitrogen-limited montado ecosystem. Oecologia, submitted

    Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Google Scholar 

  • Keuper F, Parmentier F-JW, Blok D, van Bodegom PM, Dorrepaal E, van Hal J, van Logtestijn RSP, Aerts R (2012) Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer-precipitation in Siberian shrub and Swedish bog tundra. Ambio 41:269–280

    PubMed  PubMed Central  Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Google Scholar 

  • Kim D-G, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483

    CAS  Google Scholar 

  • Knapp AK, Smith MD (2001) Variations among biomes in temporal dynamics of aboveground primary productivity. Science 291:481–484

    PubMed  CAS  Google Scholar 

  • Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205

    PubMed  CAS  Google Scholar 

  • Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry RA, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821

    Google Scholar 

  • Knapp AK, Briggs JM, Smith MD (2012) Community stability does not preclude ecosystem sensitivity to chronic resource alteration. Funct Ecol 26:1231–1233

    Google Scholar 

  • Koerner SE, Collins SL, Blair JM, Knapp AK, Smith MD (2014) Rainfall variability has minimal effects on grassland recovery from repeated grazing. J Veg Sci 25:36–44

    Google Scholar 

  • Köppen W (1923) Die Klimate der Erde. Walter de Gruyter, Berlin

    Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Google Scholar 

  • Laporte MF, Duchesne LC, Wetzel S (2002) Effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth in a grassland ecosystem of northern Ontario, Canada: implications for climate change. BMC Ecol 2:article 10

    Google Scholar 

  • Li Y, Yang H, Xia J, Zhang W, Wan S, Li L (2011) Effects of increased nitrogen deposition and precipitation on seed and seedling production of Potentilla tanacetifolia in a temperate steppe ecosystem. PLoS One 6:e28601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195

    Google Scholar 

  • Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–281

    PubMed  Google Scholar 

  • Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147:157–171

    Google Scholar 

  • Ma W, Liu Z, Wang Z, Wang W, Liang C, Tang Y, He J-S, Fang J (2010) Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. J Plant Res 123:509–517

    PubMed  Google Scholar 

  • MacDougall AS, McCann KS, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494:86–89

    PubMed  CAS  Google Scholar 

  • Mariko S, Urano T, Asanuma J (2007) Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. J Hydrol 333:118–123

    Google Scholar 

  • Matías L, Castro J, Zamora R (2012) Effect of simulated climate-change on soil respiration in a Mediterranean-type ecosystem: rainfall and habitat-type are more important than temperature or the soil carbon pool. Ecosystems 15:299–310

    Google Scholar 

  • McCulley RL, Boutton TW, Archer SR (2007) Soil respiration in a subtropical savanna parkland: response to water additions. Soil Sci Soc Am J 71:820–828

    CAS  Google Scholar 

  • McCulley RL, Burke IC, Lauenroth WK (2009) Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia 159:571–581

    PubMed  Google Scholar 

  • McGraw J (1985) Experimental ecology of Dryas octopetala ecotypes, III. Environmental factors and plant growth. Arct Alp Res 17:229–239

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  • Meisner A, Bååth E, Rousk J (2013) Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol Biochem 66:188–192

    CAS  Google Scholar 

  • Merbold L, Ardo J, Arneth A, Scholes RJ, Nouvellon Y, de Grandcourt A, Archibald S, Bonnefond JM, Boulain N, Brueggemann N, Bruemmer C, Cappelaere B, Ceschia E, El-Khidir HAM, El-Tahir BA, Falk U, Lloyd J, Kergoat L, Le Dantec V, Mougin E, Muchinda M, Mukelabai MM, Ramier D, Roupsard O, Timouk F, Veenendahl EM, Kutsch WL (2009) Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences 6:1027–1041

    CAS  Google Scholar 

  • Miller ME, Belote RT, Bowker MA, Garman S (2011) Alternative states of a semiarid grassland ecosystem: implications for ecosystem services. Ecosphere 2:article 55

    Google Scholar 

  • Miranda JD, Padilla FM, Lázaro R, Pugnaire FI (2009) Do changes in rainfall patterns affect semiarid annual plant communities? J Veg Sci 20:269–276

    Google Scholar 

  • Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian Southeast. J Arid Environ 75:1302–1309

    Google Scholar 

  • Moreno M, Gulías J, Lazaridou M, Medrano H, Cifre J (2008) Ecophysiological strategies to overcome water deficit in herbaceous species under Mediterranean conditions. Opt Médit 79:247–256

    Google Scholar 

  • Nagy L, Kreyling J, Gellesch E, Beierkuhnlein C, Jentsch A (2013) Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int J Biometeorol 57:579–588

    PubMed  CAS  Google Scholar 

  • Nippert JB, Knapp AK, Briggs JM (2006) Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol 184:65–74

    Google Scholar 

  • Niu S, Wu M, Han Y, Xia J, Li L, Wan S (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219

    PubMed  CAS  Google Scholar 

  • O’Brien MJ, Philipson CD, Tay J, Hector A (2013) The influence of variable rainfall frequency on germination and early growth of shade-tolerant Dipterocarp seedlings in Borneo. PLoS One 8:e70287

    PubMed  PubMed Central  Google Scholar 

  • Ogle K, Reynolds FJ (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294

    PubMed  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Report ORNL-5862. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Owens MK (2003) Approaches and techniques of rainfall manipulation. In: Weltzin JF, McPherson GR (eds) Changing precipitation regimes and terrestrial ecosystems: a North American perspective. University of Arizona Press, Tucson, AZ, pp 72–89

    Google Scholar 

  • Parra A, Ramírez DA, Resco V, Velasco Á, Moreno JM (2012) Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning. Int J Biometeorol 56:1033–1043

    PubMed  Google Scholar 

  • Parton W, Morgan J, Smith D, Del Grosso S, Prihodko L, Lecain D, Kelly R, Lutz S (2012) Impact of precipitation dynamics on net ecosystem productivity. Glob Change Biol 18:915–927

    Google Scholar 

  • Patrick L, Cable J, Potts D, Ignace D, Barron-Gafford G, Griffith A, Alpert H, van Gestel N, Robertson T, Huxman TE, Zak J, Loik ME, Tissue D (2007) Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia 151:704–718

    PubMed  Google Scholar 

  • Peñuelas J, Prieto P, Beier C, Cesaraccio C, de Angelis P, de Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A, Kovács Láng E, Kröel-Dulay G, Llorens L, Pellizzaro G, Riis-Nielsen T, Schmidt IK, Sirca C, Sowerby A, Spano D, Tietema A (2007) Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol 13:2563–2581

    Google Scholar 

  • Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013) Field-scale manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agric Ecosyst Environ 165:88–97

    CAS  Google Scholar 

  • Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006a) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170:849–860

    PubMed  CAS  Google Scholar 

  • Potts DL, Huxman TE, Enquist BJ, Weltzin JF, Williams DG (2006b) Resilience and resistande of ecosystem functional response to a precipitation pulse in a semi-arid grassland. J Ecol 94:23–30

    Google Scholar 

  • Potts DL, Suding KN, Winston GC, Rocha AV, Goulden ML (2012) Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland. J Arid Environ 81:59–66

    Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327

    Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    PubMed  CAS  Google Scholar 

  • Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato G, François L, Menzel A, Pereira M (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Change Biol 19:75–89

    Google Scholar 

  • Risch AC, Frank DA (2007) Effects of increased soil water availability on grassland ecosystem carbon dioxide fluxes. Biogeochemistry 86:91–103

    CAS  Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866

    Google Scholar 

  • Sala OE, Lauenroth WK, McNaughton SJ, Rusch G, Zhang X (1996) Biodiversity and ecosystem functioning in grasslands. In: Mooney HA, Cushman JH, Medina E, Sala OE, Schulze E-D (eds) Functional roles of biodiversity: a global perspective. Wiley, Chichester, pp 129–149

    Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012) Legacies of precipitation fluctuations on primary productivity: theory and data synthesis. Philos Trans R Soc B 367:3135–3144

    Google Scholar 

  • Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365:1–33

    CAS  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    PubMed  Google Scholar 

  • Sherry RA, Weng E, Arnone JA, Johnson DW, Verburg PS, Wallace LL, Luo Y (2008) Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob Change Biol 14:2923–2936

    Google Scholar 

  • Shevtsova A, Haukioja E, Ojala A (1997) Growth response of subarctic dwarf shrubs, Empetrum nigrum and Vaccinium vitis-idaea, to manipulated environmental conditions and species removal. Oikos 78:440–458

    Google Scholar 

  • Shinoda M, Nachinshonhor GU, Nemoto M (2010) Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ 74:63–69

    Google Scholar 

  • Singh JS, Lauenroth WK, Milchunas DG (1983) Geography of grassland ecosystems. Progr Phys Geogr 7:46–80

    Google Scholar 

  • Smith FM (1973) Abiotic functions in grassland ecosystems. In: van Dyne GM (ed) Analysis of structure, function, and utilization of grassland ecosystems, vol 2, A progress report. Colorado State University, Fort Collins, CO, pp 29–96

    Google Scholar 

  • Song W, Chen S, Wu B, Zhu Y, Zhou Y, Li Y, Cao Y, Lu Q, Lin G (2012) Vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to rain increase in an arid desert ecosystem. Soil Biol Biochem 49:114–123

    CAS  Google Scholar 

  • Sternberg M (2011) Climate change in unpredictable terrestrial ecosystems: an integrative approach along an aridity gradient in Israel. Paper presented at the 1st Interface workshop: how do we improve earth system models: integrating earth system models, ecosystem models, experiments and long-term data, February 28–March 3, Captiva Island, FL

    Google Scholar 

  • Suseela VA, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18:336–348

    Google Scholar 

  • Talmon Y, Sternberg M, Grünzweig JM (2011) Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient. Glob Change Biol 17:1108–1118

    Google Scholar 

  • Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011) Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob Change Biol 17:1505–1515

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Tůma I, Fiala K, Holub P, Záhora J (2009) Can soil properties in different grasslands be altered after three years of experimentally manipulated rain? Beskydy 2:71–76

    Google Scholar 

  • UNEP United Nations Environment Programme (1992) World Atlas of Desertification. Arnold A (ed). UNEP, London, pp 69

    Google Scholar 

  • Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration—Assessing the “Birch effect” by stable carbon isotopes. Soil Biol Biochem 42:1800–1810

    CAS  Google Scholar 

  • Unger S, Máguas C, Pereira JS, David TS, Werner C (2012) Interpreting postdrought rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean oak savannah. Agric For Meteorol 154–155:9–18

    Google Scholar 

  • Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012) Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Glob Change Biol 18:1401–1411

    Google Scholar 

  • Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B (2008) Interannual variations of above-ground biomass and nutritional quality of Mediterranean grasslands in Western Spain over a 20-year period. Aust J Agric Res 59:767–779

    Google Scholar 

  • Vicca S, Gilgen AK, Camino Serrano M, Dreesen FE, Dukes JS, Estiarte M, Gray SB, Guidolotti G, Hoeppner SS, Leakey ADB, Ogaya R, Ort DR, Ostrogovic MZ, Rambal S, Sardans J, Schmitt M, Siebers M, van der Linden L, van Straaten O, Granier A (2012) Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol 195:518–522

    PubMed  CAS  Google Scholar 

  • Vicca S, Estiarte M, Bahn M, Peñuelas J, Janssens I (2013) Synthesizing effects of precipitation manipulation on plant production and soil respiration—results and challenges. Geophys Res Abstr 15:EGU2013-2363-2011

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the see: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Vitousek PM, Hedin LO, Matson PA, Fownes JH, Neff J (1998) Within-system element cycles, input-output budgets, and nutrient limitation. In: Pace ML, Groffmann PM (eds) Successes, limitations, and frontiers in ecosystem science. Springer, New York, pp 432–451

    Google Scholar 

  • Weijers S, Auliaherliaty L, van Logtestijn R, Rozema J (2013) Effects of manipulated precipitation and shading on Cassiope tetragona growth and carbon isotope discrimination: a high arctic field study. Arct Antarc Alp Res 45:1–11

    Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    PubMed  CAS  Google Scholar 

  • White RP, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC

    Google Scholar 

  • Whittaker RH, Likens E (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere, ecological studies no. 14. Springer, Berlin

    Google Scholar 

  • Wold S, Martens H, Wold H (1983) The multivariate calibration problem in chemistry solved by the PLS method. In: Kågström B, Ruhe A (eds) Matrix pencils. Springer, Berlin, pp 286–293

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58:109–130

    CAS  Google Scholar 

  • Wu A, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–942

    Google Scholar 

  • Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123:79–96

    Google Scholar 

  • Xu X, Sherry RA, Niu S, Li D, Luo Y (2013) Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob Change Biol 19:2753–2764

    Google Scholar 

  • Yahdjian L, Sala OE (2002) A rainout shelter design of intercepting different amounts of rainfall. Oecologia 133:95–101

    Google Scholar 

  • Yahdjian L, Sala OE (2010) Size of precipitation pulses controls nitrogen transformation and losses in an arid Patagonian ecosystem. Ecosystems 13:575–585

    CAS  Google Scholar 

  • Yahdjian L, Sala OE, Austin AT (2006) Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe. Ecosystems 9:128–141

    CAS  Google Scholar 

  • Yan L, Chen S, Huang J, Lin G (2010) Differential responses of auto- and heterotrohpic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Glob Change Biol 16:2345–2357

    Google Scholar 

  • Yan L, Chen S, Huang J, Lin G (2011a) Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe. Plant Soil 349:227–240

    CAS  Google Scholar 

  • Yan L, Chen S, Huang J, Lin G (2011b) Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe. Glob Change Biol 17:1990–2001

    Google Scholar 

  • Zhou X, Sherry RA, An Y, Wallice LL, Luo Y (2006) Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Glob Biogeochem Cy 20, GB1003. doi:10.1029/2005GB002526

    Google Scholar 

  • Zhou X, Fei S, Sherry R, Luo Y (2012) Root biomass dynamics under experimental warming and doubled precipitation in a tallgrass prairie. Ecosystems 15:542–554

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Christine Hellmann for help and advice with the PLRS, and Peter Fay and Scott Collins for helpful suggestions on the manuscript. The authors gratefully acknowledge the financial support by FCT (Fundação para a Ciência e Tecnologia), through a postdoctoral fellowship to Marjan Jongen (SFRH/BPD/79662/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Unger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Unger, S., Jongen, M. (2015). Consequences of Changing Precipitation Patterns for Ecosystem Functioning in Grasslands: A Review. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_14

Download citation

Publish with us

Policies and ethics