Skip to main content

Carbon Reserves as Indicators for Carbon Limitation in Trees

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

In view of the current increase of atmospheric CO2 concentrations, the question if carbon is a limiting resource for tree growth or not gained large attention over the last decades. This review summarizes how tissue concentrations of nonstructural carbon (C) reserves compounds can be used to assess the C-supply status of trees. Studies that investigated the tissue concentrations of C-reserves and their seasonal variations in trees growing under natural conditions suggested that tree growth and reproduction are currently not limited by photosynthesis under benign or non-stressful climatic conditions. The comparative analysis of C-reserves in trees exposed to environmental stresses like cold temperatures and drought revealed that against previous assumption, the stress-induced decline of growth is also not caused by insufficient C-assimilation. However, recent studies on the C-relation in dying trees exposed to sustained drought indicated organ-specific different reactions of tissue C-reserve concentrations, probably as a result of impaired C-transport and reserve re-mobilization under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci U S A 106(17):7063–7066. doi:10.1073/pnas.0901438106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manage 259(4):660–684. doi:10.1016/j.foreco.2009.09.001

    Google Scholar 

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21(2):211–218

    Google Scholar 

  • Anderegg WRL (2012) Complex aspen forest carbon and root dynamics during drought A letter. Clim Change 111(3–4):983–991. doi:10.1007/s10584-012-0421-9

    Google Scholar 

  • Anderegg WRL, Anderegg LDL (2013) Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiol 33(3):252–260. doi:10.1093/treephys/tpt016

    PubMed  CAS  Google Scholar 

  • Bader MKF, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232(5):1115–1125. doi:10.1007/s00425-010-1240-8

    PubMed  CAS  Google Scholar 

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol. doi:10.1111/1365-2745.12149

    Google Scholar 

  • Bansal S, Germino MJ (2010) Unique responses of respiration, growth, and non-structural carbohydrate storage in sink tissue of conifer seedlings to an elevation gradient at timberline. Environ Exp Bot 69:313–319

    Google Scholar 

  • Barbaroux C, Breda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210

    PubMed  CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. doi:10.1126/science.1155121

    PubMed  CAS  Google Scholar 

  • Boyer JS (1970) Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol 46(2):233–235. doi:10.1104/pp. 46.2.233

    Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci 63:625–644

    Google Scholar 

  • Breshears DD, Adams HD, Eamus D, McDowell N, Law DJ, Will RE, Williams AP, Zou CB (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci 4:266

    PubMed  PubMed Central  Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155. doi:10.1111/nph.12448

    PubMed  CAS  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Google Scholar 

  • Crone EE, Miller E, Sala A (2009) How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast-seeding in a perennial wildflower. Ecol Lett 12(11):1119–1126. doi:10.1111/j.1461-0248.2009.01365.x

    PubMed  Google Scholar 

  • Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C, Loustau D, Epron D (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol 190(1):181–192. doi:10.1111/j.1469-8137.2010.03599.x

    PubMed  CAS  Google Scholar 

  • Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2011) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99(2):383–394. doi:10.1111/j.1365-2745.2010.01764.x

    Google Scholar 

  • Dawes MA, Hagedorn F, Handa IT, Streit K, Ekblad A, Rixen C, Körner C, Hättenschwiler S (2013) An alpine treeline in a carbon dioxid-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 171:623–637. doi:10.1007/s00442-012-2576-5

    PubMed  Google Scholar 

  • Dickson RE (1991) Assimilate distribution and storage. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 51–85

    Google Scholar 

  • Fajardo A, Piper FI, Pfund L, Körner C, Hoch G (2012) Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytol 195:794–802

    PubMed  CAS  Google Scholar 

  • Fajardo A, Piper FI, Hoch G (2013) Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Ann Bot 112:623–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer C, Höll W (1991) Food reserves of scots pine (Pinus sylvestris L.) I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5:187–195

    Google Scholar 

  • Fischer C, Höll W (1992) Food reserves of scots pine (Pinus sylvestris L.) II. Seasonal changes and radial distribution of carbohydrate and fat reserves in pine wood. Trees 6:147–155

    Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190(3):750–759. doi:10.1111/j.1469-8137.2010.03628.x

    PubMed  CAS  Google Scholar 

  • Galvez DA, Landhäusser SM, Tyree MT (2011) Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol 31(3):250–257. doi:10.1093/treephys/tpr012

    PubMed  Google Scholar 

  • Galvez DA, Landhäusser SM, Tyree MT (2013) Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytol 198(1):139–148. doi:10.1111/nph.12129

    PubMed  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    PubMed  CAS  Google Scholar 

  • Halter R, Sands R, Ashton DH, Nambiar EKS (1997) Root growth of subalpine and montane Eucalyptus seedlings at low soil temperatures. Trees 12(1):35–41

    Google Scholar 

  • Han Q, Kabeya D, Hoch G (2011) Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment. Ann Bot 107(8):1405–1411. doi:10.1093/aob/mcr082

    PubMed  PubMed Central  Google Scholar 

  • Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y (2014) Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 174:679–687. doi:10.1007/s00442-013-2824-3

    PubMed  Google Scholar 

  • Handa IT, Körner C, Hattenschwiler S (2005) A test of the tree-line carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86(5):1288–1300

    Google Scholar 

  • Hansen P, Grauslun J (1973) 14C-studies on apple-trees. 8. Seasonal-variation and nature of reserves. Physiol Plant 28(1):24–32

    CAS  Google Scholar 

  • Hartmann H, Ziegler W, Kolle O, Trumbore S (2013a) Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 200(2):340–349. doi:10.1111/nph.12331

    PubMed  CAS  Google Scholar 

  • Hartmann H, Ziegler W, Trumbore S (2013b) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27(2):413–427. doi:10.1111/1365-2435.12046

    Google Scholar 

  • Hoch G (2005) Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant Cell Environ 28(5):651–659

    CAS  Google Scholar 

  • Hoch G (2007) Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant tissues. Funct Ecol 21(5):823–834

    Google Scholar 

  • Hoch G (2008) The carbon supply of Picea abies trees at a Swiss montane permafrost site. Plant Ecol Divers 1(1):13–20

    Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135(1):10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97(1):57–66. doi:10.1111/j.1365-2745.2008.01447.x

    Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21(8):861–871. doi:10.1111/j.1466-8238.2011.00731.x

    Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98(3):361–374

    CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    CAS  Google Scholar 

  • Hoch G, Siegwolf RTW, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171:653–662

    PubMed  Google Scholar 

  • Hsiao TC, Acevedo E (1974) Plant responses to water deficits, water-use efficiency, and drought resistance. Agric Meteorol 14:59–84

    Google Scholar 

  • Ichie T, Nakagawa M (2013) Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecol Res 28:151–158. doi:10.1007/s11284-011-0836-1

    Google Scholar 

  • Ichie T, Igarashi S, Yoshida S, Kenzo T, Masaki T, Tayasu I (2013) Are stored carbohydrates necessary for seed production in temperate deciduous trees? J Ecol 101(2):525–531. doi:10.1111/1365-2745.12038

    CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: The Physical Science Basis. Working Group I Contribution to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Isagi Y, Sugimura K, Sumida A, Ito H (1997) How does masting happen and synchronize? J Theor Biol 187(2):231–239. doi:10.1006/jtbi.1997.0442

    Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32(18). doi:10.1029/2005GL023252

  • Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9(12):465–470

    PubMed  CAS  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428(6985):851–854

    PubMed  CAS  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172(3):393–411

    PubMed  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Berlin

    Google Scholar 

  • Körner C (2013) Growth controls photosynthesis – mostly. Nova Acta Leopoldina 31(5):713–732

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732

    Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309(5739):1360–1362

    PubMed  Google Scholar 

  • Kozlowski TT, Davis WJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego

    Google Scholar 

  • Landhäusser SM, Lieffers VJ (2003) Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees 17:471–476

    Google Scholar 

  • Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008) Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiol 28(8):1287–1296

    PubMed  CAS  Google Scholar 

  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, LaDeau SL, Jackson RB, Finzi AC (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185(2):514–528. doi:10.1111/j.1469-8137.2009.03078.x

    PubMed  CAS  Google Scholar 

  • McDowell SCL, McDowell NG, Marshall JD, Hultine K (2000) Carbon and nitrogen allocation to male and female reproduction in Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. glauca, Pinaceae). Am J Bot 87(4):539–546. doi:10.2307/2656598

    PubMed  CAS  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739. doi:10.1111/j.1469-8137.2008.02436.x

    PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26(10):523–532. doi:10.1016/j.tree.2011.06.003

    PubMed  Google Scholar 

  • Mencuccini M, Holtta T, Sevanto S, Nikinmaa E (2013) Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol 198(4):1143–1154. doi:10.1111/nph.12224

    PubMed  Google Scholar 

  • Millard P, Sommerkorn M, Grelet GA (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175(1):11–28

    PubMed  CAS  Google Scholar 

  • Miyazaki Y, Hiura T, Kato E, Funada R (2002) Allocation of resources to reproduction in Styrax obassia in a masting year. Ann Bot 89(6):767–772

    PubMed  Google Scholar 

  • Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, Jaeger CH (2006) Nitrogen and carbon storage in alpine plants. Integr Comp Biol 46(1):35–48

    PubMed  CAS  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62(6):1715–1729. doi:10.1093/jxb/erq438

    PubMed  CAS  Google Scholar 

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704. doi:10.1093/treephys/tpq027

    PubMed  CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107(45):19368–19373. doi:10.1073/pnas.1006463107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Obeso JR (1998) Effects of defoliation and girdling on fruit production in Ilex aquifolium. Funct Ecol 12(3):486–491

    Google Scholar 

  • Palacio S, Hoch G, Sala A, Körner C, Millard P (2014) Does carbon storage limit tree growth? New Phytol 201:1096–1100

    PubMed  CAS  Google Scholar 

  • Piper FI (2011) Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Ann Forest Sci 68(2):415–424

    Google Scholar 

  • Piper FI, Cavieres LA, Reyes-Diaz M, Corcuera LJ (2006) Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecol 185(1):29–39

    Google Scholar 

  • Piper FI, Reyes-Diaz M, Corucera LJ, Lusk CH (2009) Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments. Ecol Res 24:1233–1241

    CAS  Google Scholar 

  • Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HMA, Rowland L, Almeida S, Brando PM, da Costa ACL, Costa MH, Levine NM, Malhi Y, Saleska SR, Sotta E, Williams M, Meir P, Moorcroft PR (2013) Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol 200(2):350–365. doi:10.1111/nph.12390

    PubMed  Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu XM (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197(3):850–861. doi:10.1111/nph.12042

    PubMed  CAS  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12

    PubMed  Google Scholar 

  • Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard R (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961. doi:10.1111/j.1469-8137.2009.03044.x

    PubMed  CAS  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47(4):235–242

    Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32(1):22–30. doi:10.1111/j.1365-3040.2008.01896.x

    PubMed  Google Scholar 

  • Sala A, Piper FI, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    PubMed  Google Scholar 

  • Sala A, Fouts W, Hoch G (2011) Carbon storage in trees: does relative carbon supply decrease with tree size? In: Meinzer FC, Dawson TE, Ladenbruch B (eds) Size- and age-related changes in tree structure and function. Springer, Heidelberg, pp 287–306

    Google Scholar 

  • Sala A, Hopping K, McIntire EJB, Delzon S, Crone EE (2012a) Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytol 196(1):189–199. doi:10.1111/j.1469-8137.2012.04257.x

    PubMed  CAS  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012b) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    PubMed  CAS  Google Scholar 

  • Schädel C, Blöchl A, Richter A, Hoch G (2009) Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol 29(7):901–911. doi:10.1093/treephys/tpp034

    PubMed  Google Scholar 

  • Schädel C, Richter A, Blöchl A, Hoch G (2010) Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances. Physiol Plant 139(3):241–255. doi:10.1111/j.1399-3054.2010.01360.x

    PubMed  Google Scholar 

  • Schenker G, Lenz A, Körner C, Hoch G (2014) Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol 34(3):302–313. doi:10.1093/treephys/tpu003

    PubMed  Google Scholar 

  • Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:1751–1759. doi:10.1093/jxb/ert467

    PubMed  CAS  Google Scholar 

  • Sevanto S, Vesala T, Peramaki M, Nikinmaa E (2003) Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant Cell Environ 26(8):1257–1265. doi:10.1046/j.1365-3040.2003.01049.x

    Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161. doi:10.1111/pce.12141

    PubMed  CAS  Google Scholar 

  • Shi P, Körner C, Hoch G (2006) End of season carbon supply status of woody species near the treeline in western China. Basic Appl Ecol 7(4):370–377

    CAS  Google Scholar 

  • Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linean Soc 14:235–250

    Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23(16):1101–1112

    PubMed  Google Scholar 

  • Solfjeld I, Johnsen O (2006) The influence of root-zone temperature on growth of Betula pendula Roth. Trees 20(3):320–328

    Google Scholar 

  • Srichuwong S, Jane JL (2007) Physicochemical properties of starch affected by molecular composition and structures: a review. Food Sci Biotechnol 16(5):663–674

    CAS  Google Scholar 

  • Streit K, Rinne KT, Hagedorn F, Dawes MA, Saurer M, Hoch G, Werner RA, Buchmann N, Siegwolf RTW (2013) Tracing fresh assimilates through Larix decidua exposed to elevated CO2 and soil warming at the alpine treeline using compound-specific stable isotope analysis. New Phytol 197(3):838–849. doi:10.1111/nph.12074

    PubMed  CAS  Google Scholar 

  • Sveinbjörnsson B (2000) North American and European treelines: external forces and internal processes controlling position. Ambio 29(7):388–395

    Google Scholar 

  • Sveinbjornsson B, Smith M, Traustason T, Ruess RW, Sullivan PF (2010) Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska. Oecologia 163(4):833–843. doi:10.1007/s00442-010-1597-1

    PubMed  Google Scholar 

  • Veneklaas EJ, den Ouden F (2005) Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade. Environ Exp Bot 54:148–154. doi:10.1016/j.envexpbot.2004.06.010

    CAS  Google Scholar 

  • Wieser G, Tausz M (2007) Current concepts for treelife limitation at the upper timberline. In: Wieser G, Tausz M (eds) Trees at their upper limit: treelife limitation at the alpine timberline. Springer, Berlin, pp 1–10

    Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289

    PubMed  CAS  Google Scholar 

  • Will RE, Wilson SM, Zou CB, Hennessey TC (2013) Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol 200(2):366–374. doi:10.1111/nph.12321

    PubMed  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3(3):292–297. doi:10.1038/nclimate1693

    Google Scholar 

  • Windt CW, Vergeldt FJ, De Jager PA, Van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29(9):1715–1729. doi:10.1111/j.1365-3040.2006.01544.x

    PubMed  CAS  Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34(11):1920–1930. doi:10.1111/j.1365-3040.2011.02388.x

    PubMed  CAS  Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27(2):229–236

    Google Scholar 

  • Würth MKR, Pelaez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143(1):11–24

    PubMed  Google Scholar 

  • Yasumura Y, Hikosaka K, Hirose T (2006) Resource allocation to vegetative and reproductive growth in relation to mast seeding in Fagus crenata. Forest Ecol Manage 229(1–3):228–233

    Google Scholar 

  • Yoda K, Shinozaki K, Ogawa H, Hozumi K, Kira T (1965) Estimation of the total amount of respiration in woody organs of trees and forest communities. J Biol Osaka City Univ 16:15–26

    Google Scholar 

  • Zhao J, Hartmann H, Trumbore S, Ziegler W, Zhang Y (2013) High temperature causes negative whole-plant carbon balance under mild drought. New Phytol 200(2):330–339. doi:10.1111/nph.12400

    PubMed  CAS  Google Scholar 

  • Zotz G, Pepin S, Körner C (2005) No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Plant Biol 7(4):369–374

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank all colleagues, students, and field helpers who contributed to my research over the last years. Especially I thank Christian Körner, Anna Sala, Frida Piper, Alex Fajardo, and Qingmin Han for the fruitful collaborations in experiments and field surveys about the C-supply status of trees. During the time of writing this manuscript, I received funding from the European Research Council (ERC) grant No. 233399 (project ‘TREELIM’ to Christian Körner).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Hoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoch, G. (2015). Carbon Reserves as Indicators for Carbon Limitation in Trees. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_13

Download citation

Publish with us

Policies and ethics