Skip to main content

Towards Self-Powered Systems: Using Nanostructures to Harvest Ambient Energy

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Abstract

In this chapter, we present the advantages of semiconducting nanostructures (nanowires) for energy harvesting applications. Three sources of energy are considered: mechanical inputs, light and thermal energy. Different simulation approaches are used to discuss the prospects of these energy transduction solutions at nanoscale. Some guidelines are brought out for the improvement of energy conversion efficiency by nanowires, when integrated into functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vullers, R.J.M., Schaijk, R.V., Visser, H.J., Penders, J., Hoof, C.V.: Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag. 2, 29–38 (2010)

    Article  Google Scholar 

  2. Nechibvute, A., Chawanda, A., Luhanga, P.: Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012, 13 (2012)

    Google Scholar 

  3. Cook-Chennault, K.A., Thamby, N., Sastry, A.S.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  4. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  Google Scholar 

  5. Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoli, V., Espinosa, H.D.: Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970–976 (2012)

    Article  Google Scholar 

  6. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96, 1457–1486 (2008)

    Article  Google Scholar 

  7. Zhu, D., Tudor, M.J., Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21, 022001 (2010)

    Article  Google Scholar 

  8. Espinosa, H.D., Bernal, R.A., Minary-Jolandan, M.: A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012)

    Article  Google Scholar 

  9. Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoil, V., Espinosa, H.D.: Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970–976 (2012)

    Article  Google Scholar 

  10. Zhao, M.-H., Wang, Z.-L., Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004)

    Article  Google Scholar 

  11. Hinchet, R., Ferreira, J., Keraudy, J., Ardila, G., Pauliac-Vaujour, E., Mouis, M., Montes, L.: Scaling rules of piezoelectric nanowires in view of sensor and energy harvester integration. In: Electron Devices Meeting (IEDM) 2012 IEEE International, pp. 1–4 (2012)

    Google Scholar 

  12. Agrawal, R., Espinosa, H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11, 786–790 (2011)

    Article  Google Scholar 

  13. Hoang, M.-T., Yvonnet, J., Mitrushchenkov, A., Chambaud, G.: First-principles based multiscale model of piezoelectric nanowires with surface effects. J. Appl. Phys. 113, 1–9 (2013)

    Article  Google Scholar 

  14. Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)

    Article  Google Scholar 

  15. Graton, O., Poulin-Vittrant, G., Tran Huu Hue, L.P., Lethiecq, M.: Strategy of modelling and simulation of electromechanical conversion in ZnO nanowires. Adv. Appl. Ceram. 112, 85–90 (2013)

    Article  Google Scholar 

  16. Ardila, G., Hinchet, R., Montes, L., Mouis, M.: Mechanical energy harvesting with piezoelectric nanostructures: great expectations for autonomous systems. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics: Frontiers and Innovations. Wiley, New York (2013)

    Google Scholar 

  17. Ardila, G., Hinchet, R., Mouis, M., Montès, L.: Scaling prospects in mechanical energy harvesting using piezoelectric nanostructures. In: ISCDG, IEEE Conference Publications, pp. 75–78 (2012)

    Google Scholar 

  18. Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)

    Article  Google Scholar 

  19. Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009)

    Article  Google Scholar 

  20. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

  21. Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275–1285 (2010)

    Article  Google Scholar 

  22. Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  Google Scholar 

  23. Jung, J.H., Lee, M., Hong, J.-I., Ding, Y., Chen, C.-Y., Chou, L.-J., Wang, Z.L.: Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)

    Article  Google Scholar 

  24. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Article  Google Scholar 

  25. Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)

    Article  Google Scholar 

  26. Lee, M., Chen, C.-Y., Wang, S., Cha, S.N., Park, Y.J., Park, Y.J., Kim, J.M., Chou, L.-J., Wang, Z.L.: A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24, 1759–1764 (2012)

    Article  Google Scholar 

  27. Zhu, G., Wang, A.C., Liu, Y., Zhou, Y., Wang, Z.L.: Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12, 3086–3090 (2012)

    Article  Google Scholar 

  28. Hu, Y., Zhang, Y., Xu, C., Lin, L., Snyder, R.L., Wang, Z.L.: Self-powered system with wireless data transmission. Nano Lett. 11, 2572–2577 (2011)

    Article  Google Scholar 

  29. Hinchet, R., Lee, S., Ardila, G., Montes, L., Mouis, M., Wang, Z.L.: Design and guideline rules for the performance improvement of vertically integrated nanogenerator. In: PowerMEMS 2012, The 12th international workshop on micro and nanotechnology for power generation and energy conversion applications (2012)

    Google Scholar 

  30. Xu, X., Potie, A., Songmuang, R., Lee, J.W., Bercu, B., Baron, T., Salem, B., Montès, L.: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011)

    Article  Google Scholar 

  31. Garnett, E.C., Brongersma, M.L., Cui, Y., McGehee, M.D.: Nanowire solar cells. Annu. Rev. Mater. Res. 41, 11.1–11.27 (2011)

    Google Scholar 

  32. Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010)

    Google Scholar 

  33. Fan, Z., Razavi, H., Do, J., Moriwaki, A., Ergen, O., Chueh, Y.-L., Leu, P.W., Ho, J.C., Takahashi, T., Reichertz, L.A., Neale, S., Yu, K., Wu, M., Ager, J.W., Javey, A.: Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009)

    Article  Google Scholar 

  34. Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.-Y., LeBoeuf, S.F., Pietrzykowski, M., Codella, P.J., Korevaar, B.A., Sulima, O.V., Rand, J., Davuluru, A., Rapol, U.: Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics 1, 013552 (2007)

    Article  Google Scholar 

  35. O’Donnell, B., Yu, L., Foldyna, M., Roca i Cabarrocas, P.: Silicon nanowire solar cells grown by PECVD. J. Non-Cryst. Solids 358, 2299–2302 (2012)

    Article  Google Scholar 

  36. Mishima, T., Taguchi, M., Sakata, H., Maruyama, E.: Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells 95, 18–21 (2011)

    Article  Google Scholar 

  37. Latu-Romain, E., Gilet, P., Feuillet, G., Noel, P., Garcia, J., Levy, F., Chelnokov, A.: Optical and electrical characterizations of vertically integrated ZnO nanowires. Microelectron. J. 40, 224–228 (2009)

    Article  Google Scholar 

  38. Consonni, V., Rey, G., Bonaime, J., Karst, N., Doisneau, B., Roussel, H., Renet, S., Bellet, D.: Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods. Appl. Phys. Lett. 98, 111906 (2011)

    Article  Google Scholar 

  39. Schmidt-Mende, L., MacManus-Driscoll, J.L.: ZnO nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  40. Levy-Clement, C., Tena-Zaera, R., Ryan, M., Katty, A., Hodes, G.: CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions. Adv. Mater. 17, 1512–1515 (2005)

    Article  Google Scholar 

  41. Wang, K., Chen, J.J., Zeng, Z.M., Tarr, J., Zhou, W.L., Zhang, Y., Yan, Y.F., Jiang, C.S., Pern, J., Mascarenhas, A.: Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays. Appl. Phys. Lett. 96, 123105 (2010)

    Article  Google Scholar 

  42. Zhang, Y., Wu, Z., Zheng, J., Lin, X., Zhan, H., Li, S., Kang, J., Bleuse, J., Mariette, H.: ZnO/ZnSe type II core/shell nanowire array solar cell. Solar Energy Mater. Solar Cells 102, 15–18 (2012)

    Google Scholar 

  43. Wang, X., Zhu, H., Xu, Y., Wang, H., Tao, Y., Hark, S., Xiao, X., Li, Q.: Aligned ZnO/CdTe core/shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS Nano 4, 3302–3308 (2010)

    Article  Google Scholar 

  44. Putnam, M.C., Boettcher, S.W., Kelzenberg, M.D., Turner-Evans, D.B., Spurgeon, J.M., Warren, E.L., Briggs, R.M., Lewis, N.S., Atwater, H.A.: Si microwire-array solar cells. Energy Environ. Sci. 3, 1037–1041

    Google Scholar 

  45. Xu, J., Yang, X., Wang, H., Chen, X., Luan, C., Xu, Z., Lu, Z., Roy, V.A.L., Zhang, W., Lee, C.S.: Arrays of ZnO/ZnxCd1–xSe nanocables: band gap engineering and photovoltaic applications. Nano Lett. 11, 4138 (2011)

    Article  Google Scholar 

  46. Michallon, J., Zanuccoli, M., Kaminski-Cachopo, A., Consonni, V., Morand, A., Bucci, D., Emieux, F., Szambolics, H., Perraud, S., Semenikhin, I.: Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays. Mater. Sci. Eng. B 178, 665–669 (2013)

    Article  Google Scholar 

  47. Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998)

    Article  Google Scholar 

  48. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    Article  Google Scholar 

  49. Shakouri, A., Bowers, J.E.: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234–1236 (1997)

    Article  Google Scholar 

  50. Mahan, G.D.: Thermionic refrigeration. Semicond. Semimetals 71, 157–174 (2001)

    Article  Google Scholar 

  51. Zide, J.M.O., Vashaee, D., Bian, Z.X., Zeng, G., Bowers, J.E., Shakouri, A., Gossard, A.C.: Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335(5) (2006)

    Google Scholar 

  52. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    Article  Google Scholar 

  53. Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G.: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)

    Article  Google Scholar 

  54. Zhang, G., Zhang, Y.-W.: Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Phys. Status Solidi RRL (2013). doi:10.1002/pssr.201307188

  55. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  Google Scholar 

  56. Hochbaum, A.I., Chen, R., Diaz Delgado, R., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  Google Scholar 

  57. Bera, C., Mingo, N., Volz, S.: Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104, 115502(4) (2010)

    Google Scholar 

  58. Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A.: Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922–231994 (2007)

    Article  Google Scholar 

  59. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Article  Google Scholar 

  60. Martin, P.N., Aksamija, Z., Pop, E., Ravaioli, U.: Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 10, 1120–1124 (2010)

    Article  Google Scholar 

  61. Mingo, N., Yang, L., Li, D., Majumdar, A.: Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 3, 1713–1716 (2003)

    Article  Google Scholar 

  62. Mingo N, Yang L (2003) Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach. Phys. Rev. B 68: 245406(12)

    Google Scholar 

  63. Sui, Z., Herman, I.P.: Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B 48, 17938–17953 (1993)

    Article  Google Scholar 

  64. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14, 1205–1215 (1984)

    Article  Google Scholar 

  65. Rogdakis, K., Poli, S., Bano, E., Zekentes, K., Pala, M.G.: Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20, 295202(6)(2009)

    Google Scholar 

  66. Buran, C., Pala, M.G., Bescond, M., Dubois, M., Mouis, M.: Three-dimensional real-space simulation of surface roughness in silicon nanowire FETs. IEEE-Trans. Elec. Dev. 56, 2186–2192 (2009)

    Article  Google Scholar 

  67. Poli, S., Pala, M.G., Poiroux, T., Deleonibus, S., Baccarani, G.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE-Trans. Elec. Dev. 55, 2968–2976 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the European Union 7th Framework Program, within the Network of Excellence NanoFunction under grant agreement FP7/ICT/NoE n° 257375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Ardila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ardila, G. et al. (2014). Towards Self-Powered Systems: Using Nanostructures to Harvest Ambient Energy. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_11

Download citation

Publish with us

Policies and ethics