Skip to main content

Signal Sampling and Testing Under Noise

  • Chapter
  • First Online:
New Perspectives on Approximation and Sampling Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We consider, the joint nonparametric signal sampling and detection problem when noisy samples of a signal are observed. Two distinct detection schemes are examined. In the first one, the complete data set is given in advance and we wish to test the null hypothesis that a signal takes a certain parametric form. This situation we call the off-line testing problem. In the second case, the data are collected in the sequential fashion and one would like to detect a possible departure from a reference signal as quickly as possible. In such a scheme, called the online detection, we make a decision at the every new observed data point and stop the procedure when a detector finds that the null hypothesis is false. In both cases, we examine the nonparametric situation as for a well-defined null hypothesis signal model we admit broad alternative classes that cannot be parameterized. For such a setup, we introduce signal detection methods relying on nonparametric kernel-type sampling reconstruction algorithms properly adjusted for noisy data. For the off-line testing problem we examine the L 2 - distance detection statistics measuring the discrepancy between a parametric and a nonparametric estimate of the target signals. The asymptotic behavior of the test is given yielding a consistent detection method. The mathematical theory is based on the limit laws of quadratic forms of stationary random processes. In the on-line detection case our detector is represented as a normalized partial sum of continuous time stochastic process, for which we obtain a functional central limit theorem. The established limit theorems allow us to design a monitoring online algorithm with the desirable level of the probability of false alarm and able to detect a change with probability approaching one. The presented results allow for dependent noise processes such as a linear process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi, A., Leonetti, C., Sun, Q.: Error analysis of frame reconstruction from noisy samples. IEEE Trans. Signal Process. 56, 2311–2315 (2008)

    Article  MathSciNet  Google Scholar 

  2. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2007

    Google Scholar 

  3. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Prediction by samples from the past with error estimates covering discontinuous signals. IEEE Trans. Inform. Theor. 56, 614–633 (2010)

    Article  MathSciNet  Google Scholar 

  4. Baseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  5. Ben-Haim, Z., Michaeli, T., Eldar, Y.C.: Performance bounds and design criteria for estimating finite rate of innovation signals. IEEE Trans. Inform. Theor 58, 4993–5015 (2012)

    Article  MathSciNet  Google Scholar 

  6. Beran, J., Feng, Y., Ghosh, S., Kulik, R.: Long-Memory Processes. Springer, New York (2013)

    Book  MATH  Google Scholar 

  7. Bissantz, N., Holzmann, H., Munk, A.: Testing parametric assumptions on band- or time-limited signals under noise. IEEE Trans. Inform. Theor. 51, 3796–3805 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Butzer, P.L., Engels, W., Scheben, U.: Magnitude of the truncation error in sampling expansions of band-limited signals. IEEE Trans. Acoustics, Speech, Signal Process. 30, 906–912 (1982)

    Google Scholar 

  9. Cambanis, S., Masry, E.: Zakai’s class of bandlimited functions and processes: its characterization and properties. SIAM J. Appl. Math. 30, 10–21 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cappe, O., Moulines, E., Pesquet, J.C., Petropulu, A., Yang, X.: Long-range dependence and heavy-tail modeling for teletraffic data. IEEE Signal Process. Mag. 19, 14–27 (2002)

    Article  Google Scholar 

  11. Chu, C.S., Stinchcombe, J., White, H.: Monitoring structural changes. Econometrica 64, 1045–1065 (1996)

    Article  MATH  Google Scholar 

  12. Dette, H., Munk, A., Wagner, T.: Estimating the variance in nonparametric regression: what is a reasonable choice? J. Roy. Stat. Soc. 60, 751–764 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Jong, P.: A central limit theorem for generalized quadratic forms. Probab. Theor. Relat. Fields 75, 261–277 (1987)

    Article  MATH  Google Scholar 

  14. Eldar, Y.C., Unser, M.: Non-ideal sampling and interpolation from noisy observations in shift-invariant spaces. IEEE Trans. Signal Process. 54, 2636–2651 (2006)

    Article  Google Scholar 

  15. Eldar, Y.C., Michaeli, T.: Beyond bandlimited sampling. IEEE Signal Process. Mag. 26, 48–68 (2009)

    Article  Google Scholar 

  16. Giraitis, L., Koul, H.L., Surgailis, D.: Large Sample Inference for Long Memory Processes. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  17. Harchaoui, Z., Bach, F., Cappe, O., Moulines, E.: Kernel-based methods for hypothesis testing. IEEE Signal Process. Mag. 30, 87–97 (2013)

    Article  Google Scholar 

  18. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis Foundations. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  19. Hinich, M.: Large-sample estimation of an unknown discrete waveform which is randomly repeating in Gaussian noise. Ann. Math. Stat. 36, 489–508 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jennrich, R.I.: Asymptotic properties of non-linear least squares estimators. Ann. Math. Stat. 40, 633–643 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krzyżak, A., Rafajłowicz, E., Pawlak, M.: Moving average restoration of bandlimited signals from noisy observations. IEEE Trans. Signal Process. 45, 2967–2976 (1997)

    Article  Google Scholar 

  22. Liu, W., Wu, W.B.: Asymptotics of spectral density estimates. Econometric Theor. 26, 1218–1245 (2010)

    Article  MATH  Google Scholar 

  23. Manteiga, W.G., Crujeiras, R.M.: An updated review of goodness-of-fit tests for regression models (with discussion). Test 22, 361–411 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marks, R.J.: Handbook of Fourier Analysis and Its Applications. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  25. Merlevede, F., Peligrad, M., Utev, S.: Recent advances in invariance principle for stationary sequences. Probab. Surv. 3, 1–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mielniczuk, J.: Long and short-range dependent sums of infinite-order moving averages and regression estimation. Acta Sci. Math. (Szeged) 63, 301–316 (1997)

    Google Scholar 

  27. Pawlak, M.: Signal sampling and recovery under dependent noise. J. Sampl. Theor. Signal Image Process. 1, 77–86 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Pawlak, M., Rafajłowicz, E.: On restoring band-limited signals. IEEE Trans. Inform. Theor. 40, 1490–1503 (1994)

    Article  MATH  Google Scholar 

  29. Pawlak, M., Rafajłowicz, E.: Jump preserving signal reconstruction using vertical weighting. Nonlinear Anal. 47, 327–338 (1994)

    Article  Google Scholar 

  30. Pawlak, M., Rafajłowicz, E., Krzyżak, A.: Post-filtering versus pre-filtering for signal recovery from noisy samples. IEEE Trans. Inform. Theor. 49, 569–587 (2003)

    Article  Google Scholar 

  31. Pawlak, M., Rafajłowicz, E., Steland, A.: On detecting jumps in time series-nonparametric setting. J. Nonparametric Stat. 16, 329–347 (2003)

    Article  Google Scholar 

  32. Pawlak, M., Stadtmüller, U.: Recovering band-limited signals under noise. IEEE Trans. Inform. Theor. 42, 1425–1438 (1996)

    Article  MATH  Google Scholar 

  33. Pawlak, M., Stadtmüller, U.: Kernel regression estimators for signal recovery. Stat. Probab. Lett. 31, 185–198 (1997)

    Article  MATH  Google Scholar 

  34. Pawlak, M., Stadtmüller, U.: Nonparametric estimation of a class of smooth functions. J. Nonparametric Stat. 8, 149–183 (1997)

    Article  MATH  Google Scholar 

  35. Pawlak, M., Stadtmüller, U.: Statistical aspects of sampling for noisy and grouped data. In: Benedetto, J., Ferreira, P. (eds.) Advances in Shannon Sampling Theory: Mathematics and Applications, pp. 317–342. Birkhäuser, Boston (2001)

    Google Scholar 

  36. Pawlak, M., Stadtmüller, U.: Signal sampling and recovery under dependent errors. IEEE Trans. Inform. Theor. 53, 2526–2541 (2007)

    Article  MATH  Google Scholar 

  37. Pawlak, M., Steland, A.: Nonparametric sequential signal change detection under dependent noise. IEEE Trans. Inform. Theor. 59, 3514–3531 (2013)

    Article  MathSciNet  Google Scholar 

  38. Poor, H.V., Hadjiliadis, O.: Quickest Detection. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  39. Rafajłowicz, E., Pawlak, M., Steland, A.: Nonparametric sequential change-point detection by a vertically trimmed box method. IEEE Trans. Inform. Theor. 56, 3621–3634 (2010)

    Article  Google Scholar 

  40. Stoica, P., Moses, R.: Spectral Analysis of Signals. Prentice Hall, Upper Saddle River (2005)

    MATH  Google Scholar 

  41. Unser, M.: Sampling-50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  42. Vaidyanathan, P.P.: Generalizations of the sampling theorems: seven decades after Nyquist. IEEE Trans. Circ. Syst. I Fund. Theor. Appl. 48, 1094–1109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. van der Mee, C.V.M., Nashed, M.Z., Seatzu, S.: Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces. Adv. Comput. Math. 19, 355–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  45. White, H.: Consequences and detection of misspecified nonlinear regression models. J. Am. Stat. Assoc. 76, 419–433 (1981)

    Article  MATH  Google Scholar 

  46. Wu, W.B., Zhao, Z.: Inferences of trends in time series. J. R. Statist. Soc. B 69, 391–410 (2007)

    Article  MathSciNet  Google Scholar 

  47. Wu, W.B.: Recursive estimation of time-average variance constants. Ann. Appl. Probab. 19, 1529–1552 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yau, S.F., Bresler, Y.: Maximum likelihood parameter estimation of superimposed signals by dynamic programming. IEEE Trans. Signal Process. 41, 804–820 (1993)

    Article  MATH  Google Scholar 

  49. Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1994)

    Google Scholar 

  50. Zhang, T., Wu, W.B.: Testing parametric assumption of trends of a nonstationary time series. Biometrika 98, 599–614 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Pawlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pawlak, M. (2014). Signal Sampling and Testing Under Noise. In: Zayed, A., Schmeisser, G. (eds) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08801-3_9

Download citation

Publish with us

Policies and ethics