Skip to main content

Frequency Determination Using the Discrete Hermite Transform

  • Chapter
  • First Online:
New Perspectives on Approximation and Sampling Theory

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1301 Accesses

Abstract

This chapter introduces a new method for frequency determination that employs the authors’ discrete Hermite transform. Particularly for an input signal that is a linear combination of general sinusoids, this method provides highly accurate estimations of both frequencies and amplitudes of those sinusoids. The method is based primarily on the property of the discrete Hermite functions (DHf) being eigenvectors of the centered Fourier matrix, analogous to the classical result that the continuous Hermite functions (CHf) are eigenfunctions of the Fourier transform. Using this method for frequency determination, a new Hermite transform-based time-frequency representation, the HDgram, is developed that can provide clearer interpretations of frequency and amplitude content of a signal than corresponding spectrograms or scalograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clary, S., Mugler, D.H.: Shifted Fourier matrices and their tridiagonal commutors. SIAM J. Matrix Anal. 24(3), 809–821 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clary, S., Mugler, D.H.: Eigenvectors for a class of discrete cosine and sine transforms. Sampl. Theory Signal Image Process. 3, 83–94, (2004)

    MATH  MathSciNet  Google Scholar 

  3. Escalante-Ramrez, B., Martens, J.B.: Noise reduction in computerized tomography images by means of polynomial transforms. J. Visual Comm. Image Rep. 3, 272–285 (1992)

    Article  Google Scholar 

  4. Gopalikrishnan, R., Mugler, D.H.: The evolution of Hermite transform in biomedical applications. In: Shukla, A., Tiwari, R. (eds.) Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications, pp. 260–278. IGI Global, Hershey (2010)

    Chapter  Google Scholar 

  5. Gopalikrishnan, R., Acharya, S., Mugler, D.H.: Real time monitoring of ischemic changes in electrocardiograms using discrete Hermite functions. In: Proceedings of 26th International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 438–441. IEEE, Piscataway, New Jersey (2004)

    Google Scholar 

  6. Mahadevan, A., Acharya, S., Sheffer, D., Mugler, D.H.: Ballistocardiogram artifact removal in EEG-fMRI signals using Discrete Hermite transforms. IEEE J. Sel. Top. Signal Process. (Special Issue on: fMRI Analysis for Human Brain Mapping) 2(6), 839–853 (2008)

    Google Scholar 

  7. Martens, J.B.: The Hermite transform-theory. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1595–1606 (1990)

    Article  MATH  Google Scholar 

  8. Martens, J.B.: The Hermite transform-applications. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1607–1618 (1990)

    Article  Google Scholar 

  9. Mugler, D.H., Clary, S.: Discrete Hermite functions. In: Proceedings of the International Conference on Scientific Computing and Mathematical Modeling, IMACS 2000, pp. 318–321. Milwankee, Wisconsin (2000)

    Google Scholar 

  10. Mugler, D.H., Clary, S.: Discrete Hermite functions and the fractional Fourier transform. In: Proceedings of the International Workshop on Sampling Theory, pp. 303–308. IEEE, Piscataway, New Jersey (2001)

    Google Scholar 

  11. Mugler, D.H., Mahadevan, A.: Multiscale signal processing with discrete Hermite functions. In: Shen, X., Zayed, A.I. (eds.) Multiscale Signal Analysis and Modeling, pp. 257–274. Springer, New York (2012)

    Google Scholar 

  12. Mugler, D.H., Clary S., Wu, Y.: Discrete Hermite expansion of digital signals: applications to ECG signals. In: Proceedings of the IEEE Signal Processing Society 10th DSP Workshop, pp. 271–276. Georgia (2002)

    Google Scholar 

  13. Poularikas, A.D.: The Handbook of Formulas and Tables for Signal Processing. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  14. Refregier, A.: Shapelets I. A method for image analysis. Mon. Not. R. Astron. Soc. 338, 35–47 (2003)

    Google Scholar 

  15. Rodieck, R.W.: Quantitative Analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965)

    Article  Google Scholar 

  16. Silván-Cárdenas, J.L., Escalante-Ramrez, B.: The multiscale Hermite transform for local orientation analysis. IEEE Trans. Image Process. 15, 1236–1253 (2006)

    Article  Google Scholar 

  17. Van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13, 1255–1283 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jacob Trombetta, master’s student of the first-named author, for some initial development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale H. Mugler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mugler, D.H., Clary, S. (2014). Frequency Determination Using the Discrete Hermite Transform. In: Zayed, A., Schmeisser, G. (eds) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08801-3_16

Download citation

Publish with us

Policies and ethics