Skip to main content

Animal Models of Cardiovascular Disease

Abstract

Cardiovascular diseases (CVD) often lead to heart failure (HF). HF prevalence is continuously rising and represents one of the leading causes of death and an economic burden in the western societies. The study of potential novel therapeutic options and interventions requires reliable animal models to evaluate myocardial progressive structural and functional changes. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and improve prevention and treatment of patients suffering from congestive HF (CHF). Each species and animal model has advantages and disadvantages and the choice of one model over another should take them into account for a good experimental design.

The aim of this chapter is to describe and highlight the features of some commonly used animal models of cardiovascular diseases with a particular emphasis on the ones leading to HF, including nongenetically and genetically engineered models. Larger animal models will be briefly mentioned and compared to rodents but this chapter will mostly focus on rat and mouse models.

Keywords

  • Animal models
  • Rodents
  • Heart failure
  • Metabolic syndrome
  • Cardiovascular disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08798-6_19
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-08798-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 19.1
Fig. 19.2
Fig. 19.3

Abbreviations

ATH:

Atherosclerosis

CHF:

Congestive heart failure

CVD:

Cardiovascular diseases

DCM:

Dilated cardiomyopathy

DM:

Diabetes mellitus

DOCA:

Deoxycortcosterone acetate

DOX:

Doxorubicin

EF:

Ejection fraction

EMCV:

Encephalomyocarditid virus

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

HT:

Hypertension

HYP:

Hypertrophy

LAD:

Left anterior descending

LV:

Left ventricle

MCT:

Monocrotaline

MI:

Myocardial infarction

MS:

Metabolic syndrome

RAAS:

Renin-angiotensin-aldosterone system

REM:

Remodeling

References

  1. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    CAS  PubMed  Google Scholar 

  2. Leite-Moreira AF. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart. 2006;92:712–8.

    PubMed Central  PubMed  Google Scholar 

  3. Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol. 2006;15:318–30.

    CAS  PubMed  Google Scholar 

  4. Zucker LM, Zucker TF. Fatty, a new mutation in the rat. J Hered. 1961;52:275–8.

    Google Scholar 

  5. McCune S, Baker P, Stills H. SHHF/Mcc-cp rat: model of obesity, non-insulin-dependent diabetes, and congestive heart failure. ILAR J. 1990;32(3):23–7.

    Google Scholar 

  6. Rerup C, Tarding F. Streptozotocin- and alloxan-diabetes in mice. Eur J Pharmacol. 1969;7:89–96.

    CAS  PubMed  Google Scholar 

  7. Bugger H, Abel ED. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond). 2008;114:195–210.

    CAS  Google Scholar 

  8. Van den Bergh A, Flameng W, Herijgers P. Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail. 2006;8:777–83.

    PubMed  Google Scholar 

  9. Greer JJ, Ware DP, Lefer DJ. Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol. 2006;290:H146–Η153.

    CAS  PubMed  Google Scholar 

  10. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213–23.

    PubMed  Google Scholar 

  11. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994;93:1885–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bing OH, Brooks WW, Robinson KG, Slawsky MT, Hayes JA, Litwin SE, et al. The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol. 1995;27:383–96.

    CAS  PubMed  Google Scholar 

  13. Patten RD, Hall-Porter MR. Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail. 2009;2:138–44.

    PubMed  Google Scholar 

  14. Mitchell GF, Pfeffer JM, Pfeffer MA. The transition to failure in the spontaneously hypertensive rat. Am J Hypertens. 1997;10:120S–6.

    CAS  PubMed  Google Scholar 

  15. Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev. 2013;18:219–49.

    CAS  PubMed  Google Scholar 

  16. Okamoto K, Yamamoto K, Morita N, Ohta Y, Chikugo T, Higashizawa T, et al. Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. J Hypertens Suppl. 1986;4:S21–4.

    CAS  PubMed  Google Scholar 

  17. Masineni S, Chander P, Singh G, Powers C, Stier CJ. Male gender and not the severity of hypertension is associated with end-organ. Am J Hypertens. 2005;18:878–84.

    PubMed  Google Scholar 

  18. London B, et al. Calcium-dependent arrhythmias in transgenic mice with heart failure. Am J Physiol Heart Circ Physiol. 2003;284(2):H431–41.

    CAS  PubMed  Google Scholar 

  19. Heyen JR, Blasi ER, Nikula K, Rocha R, Daust HA, Frierdich G, et al. Structural, functional, and molecular characterization of the SHHF model of heart failure. Am J Physiol Heart Circ Physiol. 2002;283:H1775–84.

    CAS  PubMed  Google Scholar 

  20. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997;276:800–6.

    CAS  PubMed  Google Scholar 

  21. Schlenker EH, Kost Jr CK, Likness MM. Effects of long-term captopril and L-arginine treatment on ventilation and blood pressure in obese male SHHF rats. J Appl Physiol. 2004;97:1032–9.

    CAS  PubMed  Google Scholar 

  22. Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature. 1962;194:480–2.

    CAS  PubMed  Google Scholar 

  23. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension. 2006;47:901–11.

    CAS  PubMed  Google Scholar 

  24. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol. 1994;267:H2471–82.

    CAS  PubMed  Google Scholar 

  25. Doi R, Masuyama T, Yamamoto K, Doi Y, Mano T, Sakata Y, et al. Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens. 2000;18:111–20.

    CAS  PubMed  Google Scholar 

  26. Sun ZJ, Zhang ZE. Historic perspectives and recent advances in major animal models of hypertension. Acta Pharmacol Sin. 2005;26:295–301.

    CAS  PubMed  Google Scholar 

  27. Grobe JL, Mecca AP, Mao H, Katovich MJ. Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H2417–23.

    CAS  PubMed  Google Scholar 

  28. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovelock JD, et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Intengan HD, Park JB, Schiffrin EL. Blood pressure and small arteries in DOCA-salt-treated genetically AVP-deficient rats: role of endothelin. Hypertension. 1999;34:907–13.

    CAS  PubMed  Google Scholar 

  30. Van den Berg DT, de Kloet ER, de Jong W. Central effects of mineralocorticoid antagonist RU-28318 on blood pressure of DOCA-salt hypertensive rats. Am J Physiol. 1994;267:E927–33.

    PubMed  Google Scholar 

  31. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens. 2001;14:83S–9.

    CAS  PubMed  Google Scholar 

  32. Li L, Chu Y, Fink GD, Engelhardt JF, Heistad DD, Chen AF. Endothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension. Hypertension. 2003;42:997–1003.

    CAS  PubMed  Google Scholar 

  33. Katholi RE, Naftilan AJ, Oparil S. Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension. 1980;2:266–73.

    CAS  PubMed  Google Scholar 

  34. Brown L, Ooi SY, Lau K, Sernia C. Cardiac and vascular responses in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol. 2000;27:263–9.

    CAS  PubMed  Google Scholar 

  35. Mohammed SF, Ohtani T, Korinek J, Lam CS, Larsen K, Simari RD, et al. Mineralocorticoid accelerates transition to heart failure with preserved ejection fraction via “nongenomic effects”. Circulation. 2010;122:370–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, et al. Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular hypertensive rats. Int J Cardiol. 2008;127:198–207.

    PubMed  Google Scholar 

  38. Rizzi E, Castro MM, Prado CM, Silva CA, Fazan Jr R, Rossi MA, et al. Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail. 2010;16:599–608.

    CAS  PubMed  Google Scholar 

  39. Freeman RH, Davis JO, Watkins BE, Stephens GA, DeForrest JM. Effects of continuous converting enzyme blockade on renovascular hypertension in the rat. Am J Physiol. 1979;236:F21–4.

    CAS  PubMed  Google Scholar 

  40. Burke SL, Evans RG, Head GA. Effects of chronic sympatho-inhibition on renal excretory function in renovascular hypertension. J Hypertens. 2011;29:945–52.

    CAS  PubMed  Google Scholar 

  41. Berg RG, Leenen FH, de Jong W. Plasma renin activity and sodium, potassium and water excretion during reversal of hypertension in the one-clip two-kidney hypertensive rat. Clin Sci (Lond). 1979;57:47–52.

    CAS  Google Scholar 

  42. Kuwajima I, Kardon MB, Pegram BL, Sesoko S, Frohlich ED. Regression of left ventricular hypertrophy in two-kidney, one clip Goldblatt hypertension. Hypertension. 1982;4:113–8.

    CAS  PubMed  Google Scholar 

  43. Hamdani N, Franssen C, Lourenco A, Falcao-Pires I, Fontoura D, Leite S, et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013;6:1239–49.

    CAS  PubMed  Google Scholar 

  44. Fellmann L, Nascimento AR, Tibirica E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137:331–40.

    CAS  PubMed  Google Scholar 

  45. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317–8.

    CAS  PubMed  Google Scholar 

  46. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8.

    CAS  PubMed  Google Scholar 

  47. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol. 2003;285:H1261–9.

    CAS  PubMed  Google Scholar 

  48. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11:214–22.

    CAS  PubMed  Google Scholar 

  49. Moens AL, Ketner EA, Takimoto E, Schmidt TS, O’Neill CA, Wolin MS, et al. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51:564–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Moens AL, Leyton-Mange JS, Niu X, Yang R, Cingolani O, Arkenbout EK, et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. J Mol Cell Cardiol. 2009;47:576–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Boluyt MO, Robinson KG, Meredith AL, Sen S, Lakatta EG, Crow MT, et al. Heart failure after long-term supravalvular aortic constriction in rats. Am J Hypertens. 2005;18:202–12.

    PubMed  Google Scholar 

  52. Rockman HA, Wachhorst SP, Mao L, Ross Jr J. ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol. 1994;266:H2468–75.

    CAS  PubMed  Google Scholar 

  53. Rodriguez-Iturbe B, Quiroz Y, Kim CH, Vaziri ND. Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys. Am J Hypertens. 2005;18:1449–56.

    CAS  PubMed  Google Scholar 

  54. Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-Goncalves D, Miranda-Silva D, et al. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol. 2011;106:801–14.

    CAS  PubMed  Google Scholar 

  55. Ozek C, Zhang F, Lineaweaver WC, Chin BT, Eiman T, Newlin L, et al. A new heart failure model in rat by an end-to-side femoral vessel anastomosis. Cardiovasc Res. 1998;37:236–8.

    CAS  PubMed  Google Scholar 

  56. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 1990;24:430–2.

    CAS  PubMed  Google Scholar 

  57. Drolet MC, Lachance D, Plante E, Roussel E, Couet J, Arsenault M. Gender-related differences in left ventricular remodeling in chronic severe aortic valve regurgitation in rats. J Heart Valve Dis. 2006;15:345–51.

    PubMed  Google Scholar 

  58. Recchia FA, Lionetti V. Animal models of dilated cardiomyopathy for translational research. Vet Res Commun. 2007;31 Suppl 1:35–41.

    PubMed  Google Scholar 

  59. Peng X, Chen B, Lim CC, Sawyer DB. The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol Interv. 2005;5:163–71.

    CAS  PubMed  Google Scholar 

  60. Monnet E, Chachques JC. Animal models of heart failure: what is new? Ann Thorac Surg. 2005;79:1445–53.

    PubMed  Google Scholar 

  61. Volkova M, Russell 3rd R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7:214–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Brancaccio M, et al. Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med. 2003;9(1):68–75.

    CAS  PubMed  Google Scholar 

  63. Arber S, et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997;88(3):393–403.

    CAS  PubMed  Google Scholar 

  64. Mohapatra B, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 2003;80(1–2):207–15.

    CAS  PubMed  Google Scholar 

  65. Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2001;33(4):655–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–67.

    CAS  PubMed  Google Scholar 

  67. Milner DJ, et al. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol. 1996;134(5):1255–70.

    CAS  PubMed  Google Scholar 

  68. Vicart P, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet. 1998;20(1):92–5.

    CAS  PubMed  Google Scholar 

  69. Kumar A, et al. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A. 1997;94(9):4406–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Grady RM, et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell. 1997;90(4):729–38.

    CAS  PubMed  Google Scholar 

  71. Milano CA, et al. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A. 1994;91(21):10109–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Akhter SA, et al. Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem. 1997;272(34):21253–9.

    CAS  PubMed  Google Scholar 

  73. Cohn JN. Sympathetic nervous system in heart failure. Circulation. 2002;106(19):2417–8.

    PubMed  Google Scholar 

  74. Wang QD, Bohlooly YM, Sjoquist PO. Murine models for the study of congestive heart failure: implications for understanding molecular mechanisms and for drug discovery. J Pharmacol Toxicol Methods. 2004;50(3):163–74.

    CAS  PubMed  Google Scholar 

  75. Brede M, et al. Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure. Circulation. 2002;106(19):2491–6.

    CAS  PubMed  Google Scholar 

  76. Engelhardt S, et al. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A. 1999;96(12):7059–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Engelhardt S, et al. Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the beta1-adrenergic receptor. FASEB J. 2001;15(14):2718–20.

    CAS  PubMed  Google Scholar 

  78. Muller FU, et al. Junctional sarcoplasmic reticulum transmembrane proteins in the heart. Basic Res Cardiol. 2002;97 Suppl 1:I52–5.

    PubMed  Google Scholar 

  79. Engelhardt S, et al. Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation. Circulation. 2004;109(9):1154–60.

    CAS  PubMed  Google Scholar 

  80. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4(7):566–77.

    CAS  PubMed  Google Scholar 

  81. Schwarz B, et al. Altered calcium transient and development of hypertrophy in beta2-adrenoceptor overexpressing mice with and without pressure overload. Eur J Heart Fail. 2003;5(2):131–6.

    CAS  PubMed  Google Scholar 

  82. Schwinger RH, Bohm M, Erdmann E. Evidence against spare or uncoupled beta-adrenoceptors in the human heart. Am Heart J. 1990;119(4):899–904.

    CAS  PubMed  Google Scholar 

  83. Du XJ, et al. beta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis. Circulation. 2000;101(1):71–7.

    CAS  PubMed  Google Scholar 

  84. Schwinger RH, et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation. 1995;92(11):3220–8.

    CAS  PubMed  Google Scholar 

  85. Du XJ, et al. Response to cardiac sympathetic activation in transgenic mice overexpressing beta 2-adrenergic receptor. Am J Physiol. 1996;271(2 Pt 2):H630–6.

    CAS  PubMed  Google Scholar 

  86. Milano CA, et al. Marked enhancement in myocardial function resulting from overexpression of a human beta-adrenergic receptor gene. J Thorac Cardiovasc Surg. 1995;109(2):236–41.

    CAS  PubMed  Google Scholar 

  87. Bittner HB, et al. Functional analysis of myocardial performance in murine hearts overexpressing the human beta 2-adrenergic receptor. J Mol Cell Cardiol. 1997;29(3):961–7.

    CAS  PubMed  Google Scholar 

  88. Bond RA, et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995;374(6519):272–6.

    CAS  PubMed  Google Scholar 

  89. Zhou YY, et al. Constitutive beta2-adrenergic signalling enhances sarcoplasmic reticulum Ca2+ cycling to augment contraction in mouse heart. J Physiol. 1999;521(Pt 2):351–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Rohrer DK, et al. Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem. 1999;274(24):16701–8.

    CAS  PubMed  Google Scholar 

  91. Du XJ, et al. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res. 2000;48(3):448–54.

    CAS  PubMed  Google Scholar 

  92. Liggett SB, et al. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation. 2000;101(14):1707–14.

    CAS  PubMed  Google Scholar 

  93. Koch WJ, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995;268(5215):1350–3.

    CAS  PubMed  Google Scholar 

  94. Rockman HA, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A. 1998;95(12):7000–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Harding VB, et al. Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci U S A. 2001;98(10):5809–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Paradis P, et al. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A. 2000;97(2):931–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Kubota T, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627–35.

    CAS  PubMed  Google Scholar 

  98. McMurray J, Pfeffer MA. New therapeutic options in congestive heart failure: Part I. Circulation. 2002;105(17):2099–106.

    PubMed  Google Scholar 

  99. McMurray J, Pfeffer MA. New therapeutic options in congestive heart failure: Part II. Circulation. 2002;105(18):2223–8.

    PubMed  Google Scholar 

  100. Hirota H, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97(2):189–98.

    CAS  PubMed  Google Scholar 

  101. Hirota H, et al. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci U S A. 1995;92(11):4862–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. D'Angelo DD, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94(15):8121–6.

    PubMed Central  PubMed  Google Scholar 

  103. Esposito G, et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation. 2002;105(1):85–92.

    CAS  PubMed  Google Scholar 

  104. Mende U, et al. Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A. 1998;95(23):13893–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Akhter SA, et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998;280(5363):574–7.

    CAS  PubMed  Google Scholar 

  106. Wettschureck N, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med. 2001;7(11):1236–40.

    CAS  PubMed  Google Scholar 

  107. Iwase M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res. 1996;78(4):517–24.

    CAS  PubMed  Google Scholar 

  108. Redfern CH, et al. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci U S A. 2000;97(9):4826–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hunter JJ, et al. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem. 1995;270(39):23173–8.

    CAS  PubMed  Google Scholar 

  110. Sah VP, et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest. 1999;103(12):1627–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sussman MA, et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest. 2000;105(7):875–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wakasaki H, et al. Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A. 1997;94(17):9320–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Molkentin JD, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    CAS  PubMed  Google Scholar 

  114. Jeong D, et al. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res. 2006;99(3):307–14.

    CAS  PubMed  Google Scholar 

  115. Takeishi Y, et al. Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res. 2000;86(12):1218–23.

    CAS  PubMed  Google Scholar 

  116. Antos CL, et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res. 2001;89(11):997–1004.

    CAS  PubMed  Google Scholar 

  117. Ling H, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119(5):1230–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther. 2005;106(1):39–55.

    CAS  PubMed  Google Scholar 

  119. Yoo B, et al. Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol. 2009;297(4):H1377–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Gruver CL, et al. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology. 1993;133(1):376–88.

    CAS  PubMed  Google Scholar 

  121. Muth JN, et al. A Ca(2+)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation. 2001;103(1):140–7.

    CAS  PubMed  Google Scholar 

  122. Jones LR, et al. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest. 1998;101(7):1385–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Sato Y, et al. Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J Biol Chem. 1998;273(43):28470–7.

    CAS  PubMed  Google Scholar 

  124. Periasamy M, et al. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2 + −ATPase isoform 2 (SERCA2) gene. J Biol Chem. 1999;274(4):2556–62.

    CAS  PubMed  Google Scholar 

  125. Ito K, et al. Transgenic expression of sarcoplasmic reticulum Ca(2+) atpase modifies the transition from hypertrophy to early heart failure. Circ Res. 2001;89(5):422–9.

    CAS  PubMed  Google Scholar 

  126. Tsuji T, et al. Rescue of Ca2+ overload-induced left ventricular dysfunction by targeted ablation of phospholamban. Am J Physiol Heart Circ Physiol. 2009;296(2):H310–7.

    CAS  PubMed  Google Scholar 

  127. He H, et al. Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest. 1997;100(2):380–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Baker DL, et al. Targeted overexpression of the sarcoplasmic reticulum Ca2 + −ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res. 1998;83(12):1205–14.

    CAS  PubMed  Google Scholar 

  129. Schmitt JP, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 2003;299(5611):1410–3.

    CAS  PubMed  Google Scholar 

  130. Sato Y, et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem. 2001;276(12):9392–9.

    CAS  PubMed  Google Scholar 

  131. Dash R, et al. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation. 2001;103(6):889–96.

    CAS  PubMed  Google Scholar 

  132. Luo W, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994;75(3):401–9.

    CAS  PubMed  Google Scholar 

  133. Minamisawa S, et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell. 1999;99(3):313–22.

    CAS  PubMed  Google Scholar 

  134. Pleger ST, et al. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction. Mol Ther. 2005;12(6):1120–9.

    CAS  PubMed  Google Scholar 

  135. Xin HB, et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature. 2002;416(6878):334–8.

    CAS  PubMed  Google Scholar 

  136. Yano M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation. 2003;107(3):477–84.

    CAS  PubMed  Google Scholar 

  137. Shai SY, et al. Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res. 2002;90(4):458–64.

    CAS  PubMed  Google Scholar 

  138. Hayashidani S, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol. 2003;285(3):H1229–35.

    CAS  PubMed  Google Scholar 

  139. Ducharme A, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Creemers EE, et al. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2003;284(1):H364–71.

    CAS  PubMed  Google Scholar 

  141. Shimizu T, et al. Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int. 2010;10 Suppl 1:S70–9.

    PubMed  Google Scholar 

  142. Ikegami T, et al. Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun. 2002;296(3):729–36.

    CAS  PubMed  Google Scholar 

  143. Belke DD, et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest. 2002;109(5):629–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. McQueen AP, et al. Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol. 2005;39(6):882–92.

    CAS  PubMed  Google Scholar 

  145. Velez M, Kohli S, Sabbah HN. Animal models of insulin resistance and heart failure. Heart Fail Rev. 2014;19(1):1–13.

    CAS  PubMed  Google Scholar 

  146. Basu R, et al. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol. 2009;297(6):H2096–108.

    CAS  PubMed  Google Scholar 

  147. Yoshioka M, et al. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46(5):887–94.

    CAS  PubMed  Google Scholar 

  148. Epstein PN, Overbeek PA, Means AR. Calmodulin-induced early-onset diabetes in transgenic mice. Cell. 1989;58(6):1067–73.

    CAS  PubMed  Google Scholar 

  149. Shen X, et al. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(5):E896–905.

    CAS  PubMed  Google Scholar 

  150. Teerlink JR, Pfeffer JM, Pfeffer MA. Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res. 1994;75:105–13.

    CAS  PubMed  Google Scholar 

  151. El-Demerdash E, Awad AS, Taha RM, El-Hady AM, Sayed-Ahmed MM. Probucol attenuates oxidative stress and energy decline in isoproterenol-induced heart failure in rat. Pharmacol Res. 2005;51:311–8.

    CAS  PubMed  Google Scholar 

  152. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, et al. Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation. 2003;108:2147–52.

    CAS  PubMed  Google Scholar 

  153. Grimm D, Elsner D, Schunkert H, Pfeifer M, Griese D, Bruckschlegel G, et al. Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. Cardiovasc Res. 1998;37:91–100.

    CAS  PubMed  Google Scholar 

  154. Halapas A, Papalois A, Stauropoulou A, Philippou A, Pissimissis N, Chatzigeorgiou A, et al. In vivo models for heart failure research. In Vivo. 2008;22:767–80.

    CAS  PubMed  Google Scholar 

  155. Bayat H, Swaney JS, Ander AN, Dalton N, Kennedy BP, Hammond HK, et al. Progressive heart failure after myocardial infarction in mice. Basic Res Cardiol. 2002;97:206–13.

    PubMed  Google Scholar 

  156. Gao XM, Dart AM, Dewar E, Jennings G, Du XJ. Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res. 2000;45:330–8.

    CAS  PubMed  Google Scholar 

  157. Hwang GS, Oh KS, Koo HN, Seo HW, You KH, Lee BH. Effects of KR-31378, a novel ATP-sensitive potassium channel activator, on hypertrophy of H9c2 cells and on cardiac dysfunction in rats with congestive heart failure. Eur J Pharmacol. 2006;540:131–8.

    CAS  PubMed  Google Scholar 

  158. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, et al. Myocardial infarct size and ventricular function in rats. Circ Res. 1979;44:503–12.

    CAS  PubMed  Google Scholar 

  159. Gould KE, Taffet GE, Michael LH, Christie RM, Konkol DL, Pocius JS, et al. Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol Heart Circ Physiol. 2002;282:H615–21.

    CAS  PubMed  Google Scholar 

  160. Wu JC, Nasseri BA, Bloch KD, Picard MH, Scherrer-Crosbie M. Influence of sex on ventricular remodeling after myocardial infarction in mice. J Am Soc Echocardiogr. 2003;16:1158–62.

    PubMed  Google Scholar 

  161. Skyschally A, Leineweber K, Gres P, Haude M, Erbel R, Heusch G. Coronary microembolization. Basic Res Cardiol. 2006;101:373–82.

    PubMed  Google Scholar 

  162. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, et al. Myocardial ischemia and reperfusion: a murine model. Am J Physiol. 1995;269:H2147–54.

    CAS  PubMed  Google Scholar 

  163. West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation. 2008;118:1970–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Krzeminski TF, Nozynski JK, Grzyb J, Porc M. Wide-spread myocardial remodeling after acute myocardial infarction in rat. Features for heart failure progression. Vascul Pharmacol. 2008;48:100–8.

    CAS  PubMed  Google Scholar 

  165. Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005;26:319–26.

    CAS  PubMed  Google Scholar 

  166. Heymans S, Pauschinger M, De Palma A, Kallwellis-Opara A, Rutschow S, Swinnen M, et al. Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis. Circulation. 2006;114:565–73.

    CAS  PubMed  Google Scholar 

  167. Nishio R, Sasayama S, Matsumori A. Left ventricular pressure-volume relationship in a murine model of congestive heart failure due to acute viral myocarditis. J Am Coll Cardiol. 2002;40:1506–14.

    PubMed  Google Scholar 

  168. Matsumori A, Sasayama S. Immunomodulating agents for the management of heart failure with myocarditis and cardiomyopathy–lessons from animal experiments. Eur Heart J. 1995;16:140–3.

    CAS  PubMed  Google Scholar 

  169. Liu P, Penninger J, Aitken K, Sole M, Mak T. The role of transgenic knockout models in defining the pathogenesis of viral heart disease. Eur Heart J. 1995;16:25–7.

    PubMed  Google Scholar 

  170. Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, et al. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol. 2005;167:305–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Carvalho KA, Guarita-Souza LC, Hansen P, Rebelatto CL, Senegaglia AC, Miyague N, et al. Cell transplantation after the coculture of skeletal myoblasts and mesenchymal stem cells in the regeneration of the myocardium scar: an experimental study in rats. Transplant Proc. 2006;38:1596–602.

    CAS  PubMed  Google Scholar 

  172. Wakisaka Y, Niwano S, Niwano H, Saito J, Yoshida T, Hirasawa S, et al. Structural and electrical ventricular remodeling in rat acute myocarditis and subsequent heart failure. Cardiovasc Res. 2004;63:689–99.

    CAS  PubMed  Google Scholar 

  173. Hirono S, Islam MO, Nakazawa M, Yoshida Y, Kodama M, Shibata A, et al. Expression of inducible nitric oxide synthase in rat experimental autoimmune myocarditis with special reference to changes in cardiac hemodynamics. Circ Res. 1997;80:11–20.

    CAS  PubMed  Google Scholar 

  174. Halapas A, Pissimissis N, Lembessis P, Rizos I, Rigopoulos AG, Kremastinos DT, et al. Molecular diagnosis of the viral component in cardiomyopathies: pathophysiological, clinical and therapeutic implications. Expert Opin Ther Targets. 2008;12:821–36.

    CAS  PubMed  Google Scholar 

  175. Goser S, Andrassy M, Buss SJ, Leuschner F, Volz CH, Ottl R, et al. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation. 2006;114:1693–702.

    PubMed  Google Scholar 

  176. Usui S, Yao A, Hatano M, Kohmoto O, Takahashi T, Nagai R, et al. Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension. Circ J. 2006;70:1208–15.

    CAS  PubMed  Google Scholar 

  177. Plestina R, Stoner HB. Pulmonary oedema in rats given monocrotaline pyrrole. J Pathol. 1972;106:235–49.

    CAS  PubMed  Google Scholar 

  178. Kay JM, Smith P, Heath D. Electron microscopy of Crotalaria pulmonary hypertension. Thorax. 1969;24:511–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Schoental R, Head MA. Pathological changes in rats as a result of treatment with monocrotaline. Br J Cancer. 1955;9:229–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol. 2006;291:H2424–30.

    CAS  PubMed  Google Scholar 

  181. Wood P, Piran S, Liu PP. Diastolic heart failure: progress, treatment challenges, and prevention. Can J Cardiol. 2011;27:302–10.

    PubMed  Google Scholar 

  182. Dubi S, Arbel Y. Large animal models for diastolic dysfunction and diastolic heart failure-a review of the literature. Cardiovasc Pathol. 2010;19:147–52.

    PubMed  Google Scholar 

  183. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105:1387–93.

    PubMed  Google Scholar 

  184. Reed AL, Tanaka A, Sorescu D, Liu H, Jeong EM, Sturdy M, et al. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol. 2011;301:H824–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Brenner DA, Apstein CS, Saupe KW. Exercise training attenuates age-associated diastolic dysfunction in rats. Circulation. 2001;104:221–6.

    CAS  PubMed  Google Scholar 

  186. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Huang WY, Aramburu J, Douglas PS, Izumo S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med. 2000;6:482–3.

    CAS  PubMed  Google Scholar 

  188. Molkentin JD, Robbins J. With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J Mol Cell Cardiol. 2009;46:130–6.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Falcão-Pires MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falcão-Pires, I., Leite-Moreira, A.F. (2015). Animal Models of Cardiovascular Disease. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08798-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08797-9

  • Online ISBN: 978-3-319-08798-6

  • eBook Packages: MedicineMedicine (R0)