Abstract
The insulin-like growth factor-I (IGF-I) is an important growth factor which regulates a variety of cellular responses and has important roles in multiple biological systems. IGF-I is produced by many tissues including the myocardium, indicating that a significant component of its action is due to an autocrine and paracrine mode of function. Multiple transcripts of the Igf1 gene code for several precursor polypeptides (isoforms). IGF-I actions are mediated through its binding to several cell-membrane receptors, inducing cell proliferation, differentiation, migration and survival, and implicating this growth factor in mitogenic, myogenic and anti-apoptotic processes in cardiac muscle. In this chapter, focus has been driven on the signaling pathways that IGF-I triggers in the regulation of physiological and pathophysiological processes during cardiac hypertrophy, regeneration and remodeling. The concept of a potentially differential bioactivity and signaling of the different IGF-I peptides in the myocardium is also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- Akt:
-
Protein kinase B
- ALS:
-
Acid-labile subunit
- AMPK:
-
AMP-activated protein kinase
- APO:
-
Apoptosis
- ERKs:
-
Extracellular signal-regulated kinases
- GH:
-
Growth hormone
- GPCRs:
-
G-protein coupled receptors
- Grb2:
-
Growth receptor binding protein 2
- HGF:
-
Hepatocyte growth factor
- HSP60:
-
Heat shock protein 60
- IGFBPs:
-
IGF binding proteins
- IGF-I:
-
Insulin-like growth factor-I
- IGF-IEa:
-
IGF-IEa isoform
- IGF-IEb:
-
IGF-IEb isoform
- IGF-IIR:
-
Type 2 IGF receptor
- IGF-IR:
-
Type 1 IGF receptor
- IR:
-
Insulin receptor
- IRS:
-
Insulin receptor substrate proteins
- JNK1:
-
c-Jun N-terminal kinase 1
- MAPKs:
-
Mitogen-activated protein kinases
- MGF:
-
Mechano-growth factor
- MSCs:
-
Mesenchymal stem cells
- mTOR:
-
Mammalian target of rapamycin
- PDK1:
-
Phosphoinositide-dependent kinase-1
- PI3-K:
-
Phosphatidylinositol 3-kinase
- REG:
-
Regeneration
- SGK1:
-
Serum/glucocorticoid regulated kinase 1
- SH2:
-
Src homology 2
- Shc:
-
Src homology/collagen
- siRNA:
-
Small interfering RNA
- SirT1:
-
Sirtuin 1
- Sos:
-
Son of Sevenless
- TGF-β1 :
-
Transforming growth factor beta 1
- uPA:
-
Urokinase-type plasminogen activator
References
Laviola L, Natalicchio A, Giorgino F. The igf-i signaling pathway. Curr Pharm Des. 2007;13:663–9.
Le Roith D. Seminars in medicine of the beth Israel deaconess medical center. Insulin-like growth factors. N Engl J Med. 1997;336:633–40.
Ren J, Samson WK, Sowers JR. Insulin-like growth factor i as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol. 1999;31:2049–61.
Philippou A, Maridaki M, Halapas A, Koutsilieris M. The role of the insulin-like growth factor 1 (igf-1) in skeletal muscle physiology. In Vivo. 2007;21:45–54.
Barton ER, Park S, James JK, Makarewich CA, Philippou A, Eletto D, et al. Deletion of muscle grp94 impairs both muscle and body growth by inhibiting local igf production. FASEB J. 2012;26:3691–702.
DeBosch BJ, Muslin AJ. Insulin signaling pathways and cardiac growth. J Mol Cell Cardiol. 2008;44:855–64.
Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.
Kooijman R. Regulation of apoptosis by insulin-like growth factor (igf)-i. Cytokine Growth Factor Rev. 2006;17:305–23.
Kurmasheva RT, Houghton PJ. Igf-i mediated survival pathways in normal and malignant cells. Biochim Biophys Acta. 2006;1766:1–22.
Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415:240–3.
Suleiman MS, Singh RJ, Stewart CE. Apoptosis and the cardiac action of insulin-like growth factor i. Pharmacol Ther. 2007;114:278–94.
Catalucci D, Latronico MV, Ellingsen O, Condorelli G. Physiological myocardial hypertrophy: how and why? Front Biosci. 2008;13:312–24.
Philippou A, Armakolas A, Koutsilieris M. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer. Front Endocrinol (Lausanne). 2013;4:31.
Siegfried JM, Kasprzyk PG, Treston AM, Mulshine JL, Quinn KA, Cuttitta F. A mitogenic peptide amide encoded within the e peptide domain of the insulin-like growth factor ib prohormone. Proc Natl Acad Sci U S A. 1992;89:8107–11.
Kuo YH, Chen TT. Novel activities of pro-igf-i e peptides: regulation of morphological differentiation and anchorage-independent growth in human neuroblastoma cells. Exp Cell Res. 2002;280:75–89.
Carpenter V, Matthews K, Devlin G, Stuart S, Jensen J, Conaglen J, et al. Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ. 2008;17:33–9.
Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, et al. Igf-1 expression in infarcted myocardium and mgf e peptide actions in rat cardiomyocytes in vitro. Mol Med. 2009;15:127–35.
Mavrommatis E, Shioura KM, Los T, Goldspink PH. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction. Mol Cell Biochem. 2013;381:69–83.
Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22:53–74.
Baxter RC, Martin JL. Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog Growth Factor Res. 1989;1:49–68.
Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472–89.
Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, et al. Expression of igf-1 isoforms after exercise-induced muscle damage in humans: characterization of the mgf e peptide actions in vitro. In Vivo. 2009;23:567–75.
Milingos DS, Philippou A, Armakolas A, Papageorgiou E, Sourla A, Protopapas A, et al. Insulinlike growth factor-1ec (mgf) expression in eutopic and ectopic endometrium: characterization of the mgf e-peptide actions in vitro. Mol Med. 2010;17:21–8.
Armakolas A, Philippou A, Panteleakou Z, Nezos A, Sourla A, Petraki C, et al. Preferential expression of igf-1ec (mgf) transcript in cancerous tissues of human prostate: evidence for a novel and autonomous growth factor activity of mgf e peptide in human prostate cancer cells. Prostate. 2010;70:1233–42.
Philippou A, Armakolas A, Panteleakou Z, Pissimissis N, Nezos A, Theos A, et al. Igf1ec expression in mg-63 human osteoblast-like osteosarcoma cells. Anticancer Res. 2011;31:4259–65.
Baxter RC. Insulin-like growth factor (igf)-binding proteins: interactions with igfs and intrinsic bioactivities. Am J Physiol Endocrinol Metab. 2000;278:E967–76.
Werner H, Bruchim I. The insulin-like growth factor-i receptor as an oncogene. Arch Physiol Biochem. 2009;115:58–71.
Oh Y. Igf-independent regulation of breast cancer growth by igf binding proteins. Breast Cancer Res Treat. 1998;47:283–93.
Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (igfbp) superfamily. Endocr Rev. 1999;20:761–87.
De Meyts P, Whittaker J. Structural biology of insulin and igf1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769–83.
Kristensen C, Wiberg FC, Andersen AS. Specificity of insulin and insulin-like growth factor i receptors investigated using chimeric mini-receptors. Role of c-terminal of receptor alpha subunit. J Biol Chem. 1999;274:37351–6.
Philippou A, Halapas A, Maridaki M, Koutsilieris M. Type i insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Interact. 2007;7:208–18.
LeRoith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor i receptor. Endocr Rev. 1995;16:143–63.
Molkentin JD, Dorn GW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391–426.
Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by akt in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250–60.
McMullen JR. Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease. Clin Exp Pharmacol Physiol. 2008;35:349–54.
Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 2010;61:269–80.
Fazio S, Palmieri EA, Biondi B, Cittadini A, Sacca L. The role of the gh-igf-i axis in the regulation of myocardial growth: from experimental models to human evidence. Eur J Endocrinol. 2000;142:211–6.
Shahi M, Beshyah SA, Hackett D, Sharp PS, Johnston DG, Foale RA. Myocardial dysfunction in treated adult hypopituitarism: a possible explanation for increased cardiovascular mortality. Br Heart J. 1992;67:92–6.
Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, et al. Insulin-like growth factor-i induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993;87:1715–21.
Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.
Reiss K, Cheng W, Ferber A, Kajstura J, Li P, Li B, et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A. 1996;93:8630–5.
Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ. Local insulin-like growth factor i expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 1999;13:1923–9.
McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279:4782–93.
McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 2007;104:612–7.
Redaelli G, Malhotra A, Li B, Li P, Sonnenblick EH, Hofmann PA, et al. Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res. 1998;82:594–603.
Thorburn J, McMahon M, Thorburn A. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem. 1994;269:30580–6.
Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res. 1996;78:954–61.
Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the g protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol. 1998;142:523–35.
Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, et al. Mechanical loading activates mitogen-activated protein kinase and s6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem. 1993;268:12069–76.
Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest. 1998;102:1311–20.
Laser M, Kasi VS, Hamawaki M, Cooper G, Kerr CM, Kuppuswamy D. Differential activation of p70 and p85 s6 kinase isoforms during cardiac hypertrophy in the adult mammal. J Biol Chem. 1998;273:24610–9.
Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2011;98:5–10.
Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19:2537–48.
Muslin AJ, DeBosch B. Role of akt in cardiac growth and metabolism. Novartis Found Symp. 2006;274:118–26; discussion 126–31, 152–5, 272–6.
Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, et al. Pi3k rescues the detrimental effects of chronic akt activation in the heart during ischemia/reperfusion injury. J Clin Invest. 2005;115:2128–38.
Takano H, Komuro I, Zou Y, Kudoh S, Yamazaki T, Yazaki Y. Activation of p70 s6 protein kinase is necessary for angiotensin ii-induced hypertrophy in neonatal rat cardiac myocytes. FEBS Lett. 1996;379:255–9.
MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res. 1997;81:137–44.
Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor i. Circ Res. 1998;83:516–22.
Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor i in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A. 1995;92:8031–5.
Palmen M, Daemen MJ, Bronsaer R, Dassen WR, Zandbergen HR, Kockx M, et al. Cardiac remodeling after myocardial infarction is impaired in igf-1 deficient mice. Cardiovasc Res. 2001;50:516–24.
Saetrum Opgaard O, Wang PH. Igf-i is a matter of heart. Growth Horm IGF Res. 2005;15:89–94.
Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997;272:154–61.
Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xl gene product. Endocrinology. 1997;138:1355–8.
Lai HC, Liu TJ, Ting CT, Sharma PM, Wang PH. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of pi 3 kinase/akt pathway. Mol Cell Endocrinol. 2003;205:99–106.
Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7.
Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, et al. Nuclear targeting of akt enhances kinase activity and survival of cardiomyocytes. Circ Res. 2004;94:884–91.
Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A. 1998;95:8801–5.
Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.
Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest. 2003;111:1457–9.
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.
Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, et al. Enhancing repair of the mammalian heart. Circ Res. 2007;100:1732–40.
Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58:977–86.
Santini MP, Winn N, Rosenthal N. Signalling pathways in cardiac regeneration. Novartis Found Symp. 2006;274:228–38; discussion 239–43, 272–26.
Stavropoulou A, Philippou A, Halapas A, Sourla A, Pissimissis N, Koutsilieris M. Upa, upar and tgfbeta(1) expression during early and late post myocardial infarction period in rat myocardium. In Vivo. 2010;24:647–52.
Philippou A, Maridaki M, Koutsilieris M. The role of urokinase-type plasminogen activator (upa) and transforming growth factor beta 1 (tgfbeta1) in muscle regeneration. In Vivo. 2008;22:735–50.
Khorsandi MJ, Fagin JA, Giannella-Neto D, Forrester JS, Cercek B. Regulation of insulin-like growth factor-i and its receptor in rat aorta after balloon denudation. J Clin Invest. 1992;90:1926–31.
Lee WL, Chen JW, Ting CT, Lin SJ, Wang PH. Changes of the insulin-like growth factor i system during acute myocardial infarction: implications on left ventricular remodeling. J Clin Endocrinol Metab. 1999;84:1575–81.
Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe igf-1 deficiency. J Clin Invest. 1996;98:2648–55.
Schulze PC, Spate U. Insulin-like growth factor-1 and muscle wasting in chronic heart failure. Int J Biochem Cell Biol. 2005;37:2023–35.
Vasan RS, Sullivan LM, D’Agostino RB, Roubenoff R, Harris T, Sawyer DB, et al. Serum insulin-like growth factor i and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med. 2003;139:642–8.
Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor i (igf-i) and igf-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: The Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;89:114–20.
Sowers JR. Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension. 1997;29:691–9.
Copeland KC, Nair KS. Recombinant human insulin-like growth factor-i increases forearm blood flow. J Clin Endocrinol Metab. 1994;79:230–2.
Kotlyar AA, Vered Z, Goldberg I, Chouraqui P, Nas D, Fridman E, et al. Insulin-like growth factor i and ii preserve myocardial structure in postinfarct swine. Heart. 2001;86:693–700.
Duerr RL, McKirnan MD, Gim RD, Clark RG, Chien KR, Ross J. Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation. 1996;93:2188–96.
Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells. 2004;22:1239–45.
Shan YX, Yang TL, Mestril R, Wang PH. Hsp10 and hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy. J Biol Chem. 2003;278:45492–8.
Norby FL, Wold LE, Duan J, Hintz KK, Ren J. Igf-i attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab. 2002;283:E658–66.
Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, et al. Deficiency of pdk1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 2003;22:4666–76.
Cittadini A, Ishiguro Y, Stromer H, Spindler M, Moses AC, Clark R, et al. Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Circ Res. 1998;83:50–9.
Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, Dyck JR. Akt activity negatively regulates phosphorylation of amp-activated protein kinase in the heart. J Biol Chem. 2003;278:39422–7.
Durzynska J, Philippou A, Brisson BK, Nguyen-McCarty M, Barton ER. The pro-forms of insulin-like growth factor i (igf-i) are predominant in skeletal muscle and alter igf-i receptor activation. Endocrinology. 2013;154:1215–24.
Brisson BK, Barton ER. Insulin-like growth factor-i e-peptide activity is dependent on the igf-i receptor. PLoS One. 2012;7:e45588.
Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, et al. Migf-1/jnk1/sirt1 signaling confers protection against oxidative stress in the heart. Aging Cell. 2012;11:139–49.
Poudel B, Bilbao D, Sarathchandra P, Germack R, Rosenthal N, Santini MP. Increased cardiogenesis in p19-gfp teratocarcinoma cells expressing the propeptide igf-1ea. Biochem Biophys Res Commun. 2011;416:293–9.
Vinciguerra M, Santini MP, Claycomb WC, Ladurner AG, Rosenthal N. Local igf-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via sirt1 activity. Aging (Albany NY). 2010;2:43–62.
Philippou A, Stavropoulou A, Sourla A, Pissimissis N, Halapas A, Maridaki M, et al. Characterization of a rabbit antihuman mechano growth factor (mgf) polyclonal antibody against the last 24 amino acids of the e domain. In Vivo. 2008;22:27–35.
Moschos MM, Armakolas A, Philippou A, Pissimissis N, Panteleakou Z, Nezos A, et al. Expression of the insulin-like growth factor 1 (igf-1) and type i igf receptor mrnas in human hle-b3 lens epithelial cells. In Vivo. 2011;25:179–84.
Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol. 2010;49:1042–5.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Philippou, A., Maridaki, M., Karatzas, T., Koutsilieris, M. (2015). The Multiple Actions of the Insulin-Like Growth Factor-I Signaling in the Myocardium. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-08798-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08797-9
Online ISBN: 978-3-319-08798-6
eBook Packages: MedicineMedicine (R0)