Skip to main content

The Multiple Actions of the Insulin-Like Growth Factor-I Signaling in the Myocardium

  • Chapter
  • First Online:
Introduction to Translational Cardiovascular Research

Abstract

The insulin-like growth factor-I (IGF-I) is an important growth factor which regulates a variety of cellular responses and has important roles in multiple biological systems. IGF-I is produced by many tissues including the myocardium, indicating that a significant component of its action is due to an autocrine and paracrine mode of function. Multiple transcripts of the Igf1 gene code for several precursor polypeptides (isoforms). IGF-I actions are mediated through its binding to several cell-membrane receptors, inducing cell proliferation, differentiation, migration and survival, and implicating this growth factor in mitogenic, myogenic and anti-apoptotic processes in cardiac muscle. In this chapter, focus has been driven on the signaling pathways that IGF-I triggers in the regulation of physiological and pathophysiological processes during cardiac hypertrophy, regeneration and remodeling. The concept of a potentially differential bioactivity and signaling of the different IGF-I peptides in the myocardium is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

ALS:

Acid-labile subunit

AMPK:

AMP-activated protein kinase

APO:

Apoptosis

ERKs:

Extracellular signal-regulated kinases

GH:

Growth hormone

GPCRs:

G-protein coupled receptors

Grb2:

Growth receptor binding protein 2

HGF:

Hepatocyte growth factor

HSP60:

Heat shock protein 60

IGFBPs:

IGF binding proteins

IGF-I:

Insulin-like growth factor-I

IGF-IEa:

IGF-IEa isoform

IGF-IEb:

IGF-IEb isoform

IGF-IIR:

Type 2 IGF receptor

IGF-IR:

Type 1 IGF receptor

IR:

Insulin receptor

IRS:

Insulin receptor substrate proteins

JNK1:

c-Jun N-terminal kinase 1

MAPKs:

Mitogen-activated protein kinases

MGF:

Mechano-growth factor

MSCs:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

PDK1:

Phosphoinositide-dependent kinase-1

PI3-K:

Phosphatidylinositol 3-kinase

REG:

Regeneration

SGK1:

Serum/glucocorticoid regulated kinase 1

SH2:

Src homology 2

Shc:

Src homology/collagen

siRNA:

Small interfering RNA

SirT1:

Sirtuin 1

Sos:

Son of Sevenless

TGF-β1 :

Transforming growth factor beta 1

uPA:

Urokinase-type plasminogen activator

References

  1. Laviola L, Natalicchio A, Giorgino F. The igf-i signaling pathway. Curr Pharm Des. 2007;13:663–9.

    Article  CAS  PubMed  Google Scholar 

  2. Le Roith D. Seminars in medicine of the beth Israel deaconess medical center. Insulin-like growth factors. N Engl J Med. 1997;336:633–40.

    Article  PubMed  Google Scholar 

  3. Ren J, Samson WK, Sowers JR. Insulin-like growth factor i as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol. 1999;31:2049–61.

    Article  CAS  PubMed  Google Scholar 

  4. Philippou A, Maridaki M, Halapas A, Koutsilieris M. The role of the insulin-like growth factor 1 (igf-1) in skeletal muscle physiology. In Vivo. 2007;21:45–54.

    CAS  PubMed  Google Scholar 

  5. Barton ER, Park S, James JK, Makarewich CA, Philippou A, Eletto D, et al. Deletion of muscle grp94 impairs both muscle and body growth by inhibiting local igf production. FASEB J. 2012;26:3691–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. DeBosch BJ, Muslin AJ. Insulin signaling pathways and cardiac growth. J Mol Cell Cardiol. 2008;44:855–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34.

    CAS  PubMed  Google Scholar 

  8. Kooijman R. Regulation of apoptosis by insulin-like growth factor (igf)-i. Cytokine Growth Factor Rev. 2006;17:305–23.

    Article  CAS  PubMed  Google Scholar 

  9. Kurmasheva RT, Houghton PJ. Igf-i mediated survival pathways in normal and malignant cells. Biochim Biophys Acta. 2006;1766:1–22.

    CAS  PubMed  Google Scholar 

  10. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415:240–3.

    Article  CAS  PubMed  Google Scholar 

  11. Suleiman MS, Singh RJ, Stewart CE. Apoptosis and the cardiac action of insulin-like growth factor i. Pharmacol Ther. 2007;114:278–94.

    Article  CAS  PubMed  Google Scholar 

  12. Catalucci D, Latronico MV, Ellingsen O, Condorelli G. Physiological myocardial hypertrophy: how and why? Front Biosci. 2008;13:312–24.

    Article  CAS  PubMed  Google Scholar 

  13. Philippou A, Armakolas A, Koutsilieris M. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer. Front Endocrinol (Lausanne). 2013;4:31.

    Google Scholar 

  14. Siegfried JM, Kasprzyk PG, Treston AM, Mulshine JL, Quinn KA, Cuttitta F. A mitogenic peptide amide encoded within the e peptide domain of the insulin-like growth factor ib prohormone. Proc Natl Acad Sci U S A. 1992;89:8107–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kuo YH, Chen TT. Novel activities of pro-igf-i e peptides: regulation of morphological differentiation and anchorage-independent growth in human neuroblastoma cells. Exp Cell Res. 2002;280:75–89.

    Article  CAS  PubMed  Google Scholar 

  16. Carpenter V, Matthews K, Devlin G, Stuart S, Jensen J, Conaglen J, et al. Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ. 2008;17:33–9.

    Article  PubMed  Google Scholar 

  17. Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, et al. Igf-1 expression in infarcted myocardium and mgf e peptide actions in rat cardiomyocytes in vitro. Mol Med. 2009;15:127–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mavrommatis E, Shioura KM, Los T, Goldspink PH. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction. Mol Cell Biochem. 2013;381:69–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22:53–74.

    Article  PubMed  Google Scholar 

  20. Baxter RC, Martin JL. Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog Growth Factor Res. 1989;1:49–68.

    Article  CAS  PubMed  Google Scholar 

  21. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472–89.

    Article  CAS  PubMed  Google Scholar 

  22. Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, et al. Expression of igf-1 isoforms after exercise-induced muscle damage in humans: characterization of the mgf e peptide actions in vitro. In Vivo. 2009;23:567–75.

    CAS  PubMed  Google Scholar 

  23. Milingos DS, Philippou A, Armakolas A, Papageorgiou E, Sourla A, Protopapas A, et al. Insulinlike growth factor-1ec (mgf) expression in eutopic and ectopic endometrium: characterization of the mgf e-peptide actions in vitro. Mol Med. 2010;17:21–8.

    PubMed Central  PubMed  Google Scholar 

  24. Armakolas A, Philippou A, Panteleakou Z, Nezos A, Sourla A, Petraki C, et al. Preferential expression of igf-1ec (mgf) transcript in cancerous tissues of human prostate: evidence for a novel and autonomous growth factor activity of mgf e peptide in human prostate cancer cells. Prostate. 2010;70:1233–42.

    Article  CAS  PubMed  Google Scholar 

  25. Philippou A, Armakolas A, Panteleakou Z, Pissimissis N, Nezos A, Theos A, et al. Igf1ec expression in mg-63 human osteoblast-like osteosarcoma cells. Anticancer Res. 2011;31:4259–65.

    CAS  PubMed  Google Scholar 

  26. Baxter RC. Insulin-like growth factor (igf)-binding proteins: interactions with igfs and intrinsic bioactivities. Am J Physiol Endocrinol Metab. 2000;278:E967–76.

    CAS  PubMed  Google Scholar 

  27. Werner H, Bruchim I. The insulin-like growth factor-i receptor as an oncogene. Arch Physiol Biochem. 2009;115:58–71.

    Article  CAS  PubMed  Google Scholar 

  28. Oh Y. Igf-independent regulation of breast cancer growth by igf binding proteins. Breast Cancer Res Treat. 1998;47:283–93.

    Article  CAS  PubMed  Google Scholar 

  29. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (igfbp) superfamily. Endocr Rev. 1999;20:761–87.

    CAS  PubMed  Google Scholar 

  30. De Meyts P, Whittaker J. Structural biology of insulin and igf1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769–83.

    Article  PubMed  Google Scholar 

  31. Kristensen C, Wiberg FC, Andersen AS. Specificity of insulin and insulin-like growth factor i receptors investigated using chimeric mini-receptors. Role of c-terminal of receptor alpha subunit. J Biol Chem. 1999;274:37351–6.

    Article  CAS  PubMed  Google Scholar 

  32. Philippou A, Halapas A, Maridaki M, Koutsilieris M. Type i insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Interact. 2007;7:208–18.

    CAS  PubMed  Google Scholar 

  33. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor i receptor. Endocr Rev. 1995;16:143–63.

    Article  CAS  PubMed  Google Scholar 

  34. Molkentin JD, Dorn GW. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391–426.

    Article  CAS  PubMed  Google Scholar 

  35. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by akt in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250–60.

    Article  CAS  PubMed  Google Scholar 

  36. McMullen JR. Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease. Clin Exp Pharmacol Physiol. 2008;35:349–54.

    Article  CAS  PubMed  Google Scholar 

  37. Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 2010;61:269–80.

    Article  CAS  PubMed  Google Scholar 

  38. Fazio S, Palmieri EA, Biondi B, Cittadini A, Sacca L. The role of the gh-igf-i axis in the regulation of myocardial growth: from experimental models to human evidence. Eur J Endocrinol. 2000;142:211–6.

    Article  CAS  PubMed  Google Scholar 

  39. Shahi M, Beshyah SA, Hackett D, Sharp PS, Johnston DG, Foale RA. Myocardial dysfunction in treated adult hypopituitarism: a possible explanation for increased cardiovascular mortality. Br Heart J. 1992;67:92–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, et al. Insulin-like growth factor-i induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993;87:1715–21.

    Article  CAS  PubMed  Google Scholar 

  41. Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.

    Article  CAS  PubMed  Google Scholar 

  42. Reiss K, Cheng W, Ferber A, Kajstura J, Li P, Li B, et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A. 1996;93:8630–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Delaughter MC, Taffet GE, Fiorotto ML, Entman ML, Schwartz RJ. Local insulin-like growth factor i expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 1999;13:1923–9.

    CAS  PubMed  Google Scholar 

  44. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279:4782–93.

    Article  CAS  PubMed  Google Scholar 

  45. McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 2007;104:612–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Redaelli G, Malhotra A, Li B, Li P, Sonnenblick EH, Hofmann PA, et al. Effects of constitutive overexpression of insulin-like growth factor-1 on the mechanical characteristics and molecular properties of ventricular myocytes. Circ Res. 1998;82:594–603.

    Article  CAS  PubMed  Google Scholar 

  47. Thorburn J, McMahon M, Thorburn A. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem. 1994;269:30580–6.

    CAS  PubMed  Google Scholar 

  48. Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res. 1996;78:954–61.

    Article  CAS  PubMed  Google Scholar 

  49. Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the g protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol. 1998;142:523–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, et al. Mechanical loading activates mitogen-activated protein kinase and s6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem. 1993;268:12069–76.

    CAS  PubMed  Google Scholar 

  51. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest. 1998;102:1311–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Laser M, Kasi VS, Hamawaki M, Cooper G, Kerr CM, Kuppuswamy D. Differential activation of p70 and p85 s6 kinase isoforms during cardiac hypertrophy in the adult mammal. J Biol Chem. 1998;273:24610–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2011;98:5–10.

    Article  PubMed  Google Scholar 

  54. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19:2537–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Muslin AJ, DeBosch B. Role of akt in cardiac growth and metabolism. Novartis Found Symp. 2006;274:118–26; discussion 126–31, 152–5, 272–6.

    Article  CAS  PubMed  Google Scholar 

  56. Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, et al. Pi3k rescues the detrimental effects of chronic akt activation in the heart during ischemia/reperfusion injury. J Clin Invest. 2005;115:2128–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Takano H, Komuro I, Zou Y, Kudoh S, Yamazaki T, Yazaki Y. Activation of p70 s6 protein kinase is necessary for angiotensin ii-induced hypertrophy in neonatal rat cardiac myocytes. FEBS Lett. 1996;379:255–9.

    Article  CAS  PubMed  Google Scholar 

  58. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res. 1997;81:137–44.

    Article  CAS  PubMed  Google Scholar 

  59. Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor i. Circ Res. 1998;83:516–22.

    Article  CAS  PubMed  Google Scholar 

  60. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor i in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A. 1995;92:8031–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Palmen M, Daemen MJ, Bronsaer R, Dassen WR, Zandbergen HR, Kockx M, et al. Cardiac remodeling after myocardial infarction is impaired in igf-1 deficient mice. Cardiovasc Res. 2001;50:516–24.

    Article  CAS  PubMed  Google Scholar 

  62. Saetrum Opgaard O, Wang PH. Igf-i is a matter of heart. Growth Horm IGF Res. 2005;15:89–94.

    Article  PubMed  Google Scholar 

  63. Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997;272:154–61.

    Article  CAS  PubMed  Google Scholar 

  64. Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xl gene product. Endocrinology. 1997;138:1355–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lai HC, Liu TJ, Ting CT, Sharma PM, Wang PH. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of pi 3 kinase/akt pathway. Mol Cell Endocrinol. 2003;205:99–106.

    Article  CAS  PubMed  Google Scholar 

  66. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101:660–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, et al. Nuclear targeting of akt enhances kinase activity and survival of cardiomyocytes. Circ Res. 2004;94:884–91.

    Article  CAS  PubMed  Google Scholar 

  68. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A. 1998;95:8801–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.

    Article  CAS  PubMed  Google Scholar 

  70. Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest. 2003;111:1457–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  72. Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, et al. Enhancing repair of the mammalian heart. Circ Res. 2007;100:1732–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58:977–86.

    Article  CAS  PubMed  Google Scholar 

  74. Santini MP, Winn N, Rosenthal N. Signalling pathways in cardiac regeneration. Novartis Found Symp. 2006;274:228–38; discussion 239–43, 272–26.

    Article  CAS  PubMed  Google Scholar 

  75. Stavropoulou A, Philippou A, Halapas A, Sourla A, Pissimissis N, Koutsilieris M. Upa, upar and tgfbeta(1) expression during early and late post myocardial infarction period in rat myocardium. In Vivo. 2010;24:647–52.

    CAS  PubMed  Google Scholar 

  76. Philippou A, Maridaki M, Koutsilieris M. The role of urokinase-type plasminogen activator (upa) and transforming growth factor beta 1 (tgfbeta1) in muscle regeneration. In Vivo. 2008;22:735–50.

    CAS  PubMed  Google Scholar 

  77. Khorsandi MJ, Fagin JA, Giannella-Neto D, Forrester JS, Cercek B. Regulation of insulin-like growth factor-i and its receptor in rat aorta after balloon denudation. J Clin Invest. 1992;90:1926–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lee WL, Chen JW, Ting CT, Lin SJ, Wang PH. Changes of the insulin-like growth factor i system during acute myocardial infarction: implications on left ventricular remodeling. J Clin Endocrinol Metab. 1999;84:1575–81.

    CAS  PubMed  Google Scholar 

  79. Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe igf-1 deficiency. J Clin Invest. 1996;98:2648–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Schulze PC, Spate U. Insulin-like growth factor-1 and muscle wasting in chronic heart failure. Int J Biochem Cell Biol. 2005;37:2023–35.

    Article  CAS  PubMed  Google Scholar 

  81. Vasan RS, Sullivan LM, D’Agostino RB, Roubenoff R, Harris T, Sawyer DB, et al. Serum insulin-like growth factor i and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med. 2003;139:642–8.

    Article  CAS  PubMed  Google Scholar 

  82. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor i (igf-i) and igf-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: The Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;89:114–20.

    Article  CAS  PubMed  Google Scholar 

  83. Sowers JR. Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension. 1997;29:691–9.

    Article  CAS  PubMed  Google Scholar 

  84. Copeland KC, Nair KS. Recombinant human insulin-like growth factor-i increases forearm blood flow. J Clin Endocrinol Metab. 1994;79:230–2.

    CAS  PubMed  Google Scholar 

  85. Kotlyar AA, Vered Z, Goldberg I, Chouraqui P, Nas D, Fridman E, et al. Insulin-like growth factor i and ii preserve myocardial structure in postinfarct swine. Heart. 2001;86:693–700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Duerr RL, McKirnan MD, Gim RD, Clark RG, Chien KR, Ross J. Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation. 1996;93:2188–96.

    Article  CAS  PubMed  Google Scholar 

  87. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells. 2004;22:1239–45.

    Article  CAS  PubMed  Google Scholar 

  88. Shan YX, Yang TL, Mestril R, Wang PH. Hsp10 and hsp60 suppress ubiquitination of insulin-like growth factor-1 receptor and augment insulin-like growth factor-1 receptor signaling in cardiac muscle: implications on decreased myocardial protection in diabetic cardiomyopathy. J Biol Chem. 2003;278:45492–8.

    Article  CAS  PubMed  Google Scholar 

  89. Norby FL, Wold LE, Duan J, Hintz KK, Ren J. Igf-i attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab. 2002;283:E658–66.

    CAS  PubMed  Google Scholar 

  90. Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, et al. Deficiency of pdk1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 2003;22:4666–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Cittadini A, Ishiguro Y, Stromer H, Spindler M, Moses AC, Clark R, et al. Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Circ Res. 1998;83:50–9.

    Article  CAS  PubMed  Google Scholar 

  92. Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, Dyck JR. Akt activity negatively regulates phosphorylation of amp-activated protein kinase in the heart. J Biol Chem. 2003;278:39422–7.

    Article  CAS  PubMed  Google Scholar 

  93. Durzynska J, Philippou A, Brisson BK, Nguyen-McCarty M, Barton ER. The pro-forms of insulin-like growth factor i (igf-i) are predominant in skeletal muscle and alter igf-i receptor activation. Endocrinology. 2013;154:1215–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Brisson BK, Barton ER. Insulin-like growth factor-i e-peptide activity is dependent on the igf-i receptor. PLoS One. 2012;7:e45588.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, et al. Migf-1/jnk1/sirt1 signaling confers protection against oxidative stress in the heart. Aging Cell. 2012;11:139–49.

    Article  CAS  PubMed  Google Scholar 

  96. Poudel B, Bilbao D, Sarathchandra P, Germack R, Rosenthal N, Santini MP. Increased cardiogenesis in p19-gfp teratocarcinoma cells expressing the propeptide igf-1ea. Biochem Biophys Res Commun. 2011;416:293–9.

    Article  CAS  PubMed  Google Scholar 

  97. Vinciguerra M, Santini MP, Claycomb WC, Ladurner AG, Rosenthal N. Local igf-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via sirt1 activity. Aging (Albany NY). 2010;2:43–62.

    CAS  Google Scholar 

  98. Philippou A, Stavropoulou A, Sourla A, Pissimissis N, Halapas A, Maridaki M, et al. Characterization of a rabbit antihuman mechano growth factor (mgf) polyclonal antibody against the last 24 amino acids of the e domain. In Vivo. 2008;22:27–35.

    CAS  PubMed  Google Scholar 

  99. Moschos MM, Armakolas A, Philippou A, Pissimissis N, Panteleakou Z, Nezos A, et al. Expression of the insulin-like growth factor 1 (igf-1) and type i igf receptor mrnas in human hle-b3 lens epithelial cells. In Vivo. 2011;25:179–84.

    CAS  PubMed  Google Scholar 

  100. Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol. 2010;49:1042–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koutsilieris MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Philippou, A., Maridaki, M., Karatzas, T., Koutsilieris, M. (2015). The Multiple Actions of the Insulin-Like Growth Factor-I Signaling in the Myocardium. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08798-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08797-9

  • Online ISBN: 978-3-319-08798-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics